Publications<< Back

Lopez-Vilchez I, Diaz-Ricart M, Galán AM, Roqué M, Caballo C, Molina P, White JG, Escolar G

Internalization of Tissue Factor-Rich Microvesicles by Platelets Occurs Independently of GPIIb-IIIa, and Involves CD36 Receptor, Serotonin Transporter and Cytoskeletal Assembly.

J. Cell. Biochem.. 2016 Feb;117(2):448-57, PMID: 26221761

Platelets are important in hemostasis, but also detect particles and pathogens in the circulation. Phagocytic and endocytic activities of platelets are widely recognized; however, receptors and mechanisms involved remain poorly understood. We previously demonstrated that platelets internalize and store phospholipid microvesicles enriched in human tissue factor (TF+MVs) and that platelet-associated TF enhances thrombus formation at sites of vascular damage. Here, we investigate the mechanisms implied in the interactions of TF+MVs with platelets and the effects of specific inhibitory strategies. Aggregometry and electron microscopy were used to assess platelet activation and TF+MVs uptake. Cytoskeletal assembly and activation of phosphoinositide 3-kinase (PI3K) and RhoA were analyzed by western blot and ELISA. Exposure of platelets to TF+MVs caused reversible platelet aggregation, actin polymerization and association of contractile proteins to the cytoskeleton being maximal at 1 min. The same kinetics were observed for activation of PI3K and translocation of RhoA to the cytoskeleton. Inhibitory strategies to block glycoprotein IIb-IIIa (GPIIb-IIIa), scavenger receptor CD36, serotonin transporter (SERT) and PI3K, fully prevented platelet aggregation by TF+MVs. Ultrastructural techniques revealed that uptake of TF+MVs was efficiently prevented by anti-CD36 and SERT inhibitor, but only moderately interfered by GPIIb-IIIa blockade. We conclude that internalization of TF+MVs by platelets occurs independently of receptors related to their main hemostatic function (GPIIb-IIIa), involves the scavenger receptor CD36, SERT and engages PI3-Kinase activation and cytoskeletal assembly. CD36 and SERT appear as potential therapeutic targets to interfere with the association of TF+MVs with platelets and possibly downregulate their prothrombotic phenotype. J. Cell. Biochem. 117: 448-457, 2016. © 2015 Wiley Periodicals, Inc.

BIOCHEMISTRY & MOLECULAR BIOLOGY

Download publication

An initiative of

Ministerio de Economía y Competitividad Fondo Europeo de Desarrollo Regional IMIM - Parc de Salut Mar