Chronic Hydroxychloroquine Improves Endothelial Dysfunction and Protects Kidney in a Mouse Model of Systemic Lupus Erythematosus

Manuel Gómez-Guzmán, Rosario Jiménez, Miguel Romero, Manuel Sánchez, María José Zarzuelo, Mercedes Gómez-Morales, Francisco Ó’Valle, Antonio José López-Farré, Francesca Algieri, Julio Gálvez, Francisco Pérez-Vizcaíno, José Mario Sabio and Juan Duarte

Hypertension. 2014;64:330-337; originally published online May 19, 2014;
doi: 10.1161/HYPERTENSIONAHA.114.03587

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/64/2/330

Data Supplement (unedited) at:
http://hyper.ahajournals.org/content/suppl/2014/05/19/HYPERTENSIONAHA.114.03587.DC1.html
Chronic Hydroxychloroquine Improves Endothelial Dysfunction and Protects Kidney in a Mouse Model of Systemic Lupus Erythematosus

Manuel Gómez-Guzmán, Rosario Jiménez, Miguel Romero, Manuel Sánchez, María José Zarzuelo, Mercedes Gómez-Morales, Francisco O’Valle, Antonio José López-Farré, Francesca Algieri, Julio Gálvez, Francisco Pérez-Vizcaino, José Mario Sabio, Juan Duarte

Abstract—Hydroxychloroquine has been shown to be efficacious in the treatment of autoimmune diseases, including systemic lupus erythematosus. Hydroxychloroquine-treated lupus patients showed a lower incidence of thromboembolic disease. Endothelial dysfunction, the earliest indicator of the development of cardiovascular disease, is present in lupus. Whether hydroxychloroquine improves endothelial function in lupus is not clear. The aim of this study was to analyze the effects of hydroxychloroquine on hypertension, endothelial dysfunction, and renal injury in a female mouse model of lupus. NZBWF1 (lupus) and NZW/LacJ (control) mice were treated with hydroxychloroquine 10 mg/kg per day by oral gavage, or with tempol and apocynin in the drinking water, for 5 weeks. Hydroxychloroquine treatment did not alter lupus disease activity (assessed by plasma double-stranded DNA autoantibodies) but prevented hypertension, cardiac and renal hypertrophy, proteinuria, and renal injury in lupus mice. Aortae from lupus mice showed reduced endothelium-dependent vasodilator responses to acetylcholine and enhanced contraction to phenylephrine, which were normalized by hydroxychloroquine or antioxidant treatments. No differences among all experimental groups were found in both the relaxant responses to acetylcholine and the contractile responses to phenylephrine in rings incubated with the nitric oxide synthase inhibitor NG-nitro-l-arginine methyl ester. Vascular reactive oxygen species content and mRNA levels of nicotinamide adenine dinucleotide phosphate oxidase subunits NOX-1 and p47phox were increased in lupus mice and reduced by hydroxychloroquine or antioxidants. Chronic hydroxychloroquine treatment reduced hypertension, endothelial dysfunction, and organ damage in severe lupus mice, despite the persistent elevation of anti–double-stranded DNA, suggesting the involvement of new additional mechanisms to improve cardiovascular complications. (Hypertension. 2014;64:330-337.) ● Online Data Supplement

Kidney

Chronic Hydroxychloroquine Improves Endothelial Dysfunction and Protects Kidney in a Mouse Model of Systemic Lupus Erythematosus

Received March 20, 2014; first decision March 31, 2014; revision accepted April 25, 2014.

Correspondence to Juan Duarte, Department of Pharmacology, School of Pharmacy, University of Granada, 18071 Granada, Spain. E-mail jnduarte@ugr.es

© 2014 American Heart Association, Inc.

Hypertension is available at http://hyper.ahajournals.org

DOI: 10.1161/HYPERTENSIONAHA.114.03587

Downloaded from http://hyper.ahajournals.org/ by ROBERTO ELOSUA LLANOS on November 5, 2014
Antimalarial drugs remain the first-line treatment for patients with mild SLE along with nonsteroidal anti-inflammatory drugs. The antimalarial drug hydroxychloroquine has immunomodulatory actions and has demonstrated several beneficial cardiovascular effects in patients with SLE. Hydroxychloroquine has been shown to reduce serum cholesterol and low-density lipoprotein levels compared with patients treated with corticosteroids, and the lipid-lowering effect of hydroxychloroquine is greater in younger patients (age, 16–39 years). Patients with lupus treated with hydroxychloroquine have significantly lower mean glucose levels and fasting glucose, and markers of insulin resistance in women with SLE. Hydroxychloroquine was protective against thrombovascular events, and a negative relationship was found between the use of hydroxychloroquine and the presence of atherosclerosis. Hydroxychloroquine has been shown to reduce serum cholesterol and low-density lipoprotein levels compared with patients treated with corticosteroids, and the lipid-lowering effect of hydroxychloroquine is greater in younger patients (age, 16–39 years). Patients with lupus treated with hydroxychloroquine showed similar plasma anti–double-stranded DNA (dsDNA) titers than untreated ones, suggesting the involvement of other protective mechanisms. Hydroxychloroquine inhibited O$_2^-$ generation in mononuclear phagocytes stimulated by different agents, but whether hydroxychloroquine is able to reduce oxidative stress in other cell types or in vivo is unknown. We hypothesized that hydroxychloroquine would reduce blood pressure and restore endothelial dysfunction. Therefore, the present study was designed to analyze the effects of hydroxychloroquine on endothelial dysfunction, oxidative stress, and renal injury in a mouse model of SLE (female NZBWF1 mice) and whether an in vivo antioxidant effect was involved.

Materials and Methods

The investigation conforms to the National Institutes of Health Guide for the Care and Use of Laboratory Animals and our Institutional Guidelines for the ethical care of animals. Thirty-week-old female NZBWF1 (SLE) and NZW/LacJ (control) mice obtained from Jackson Laboratories (Bar Harbor, ME) were randomly assigned to receive by oral gavage hydroxychloroquine (10 mg/kg per day) or vehicle (1 mL of 1% methylcellulose) or a combination of the antioxidants tempol (2.0 mmol/L) and apocynin (1.5 mmol/L) in the drinking water for 5 weeks. Mice were randomly divided into 5 groups: control untreated (Ctrl-Veh), control treated with hydroxychloroquine (SLE-HCQ), SLE untreated (SLE-Veh), SLE treated with hydroxychloroquine (SLE-HCQ), and SLE treated with hydroxychloroquine (SLE-HCQ) and SLE treated with tempol and apocynin. Systolic blood pressure (SBP) and heart rate were measured by tail-cuff plethysmography and by intraarterial register. At the end of the experiment, plasma anti-dsDNA antibodies, plasma malonyldialdehyde, physical characteristics, cardiac and renal weight indices, and proteinuria were measured. Histopathologic evaluation of kidneys was also performed in sections stained with hematoxylin–eosin. Periodic acid–Schiff, and Masson trichrome. Descending thoracic aortic rings were mounted in a wire myograph for isometric tension measurement. ROS levels were estimated from the ratio of ethidium/4,6-diamidino-2-phenylindole dichlorohydride (DAPi) fluorescence in sections of unfixed thoracic aortic rings incubated with dihydroethidium and counterstained with the nuclear stain DAPI. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity was measured by the lucigenin-enhanced chemiluminescence assay. Flow cytometry was used to measure B (positive to anti-B220+) and T cells (positive to anti-CD4+, total T; anti-CD4+ FOXP3+, regulatory T cells; anti-CD4+ IL17+, Th17; and anti-CD4+ IFNγ+, Th1) from spleens. Protein and mRNA expression were measured by Western blotting analysis and reverse transcriptase-polymerase chain reaction analysis, respectively. An expanded Methods section is available in the online-only Data Supplement.

Results

Effects of Hydroxychloroquine on Blood Pressure, Cardiac and Renal Hypertrophy, Spleen Lymphocytes, and Plasma Determinations

The time course of tail SBP is shown in Figure 1A, and the final SBP and heart rate measured by direct recordings are shown in Figure 1B. Initial SBP was significantly higher in SLE mice compared with controls. No significant changes in SBP were induced by 5 weeks of vehicle treatment either in SLE or in control mice. Both hydroxychloroquine and antioxidant treatments reduced SBP in SLE mice (Figure 1A and 1B), being without effects on heart rate (Figure 1B). Heart weight/tibia length and kidney weight/tibia length indices were higher in SLE-Veh (0.076±0.003 and 0.100±0.006 g/cm, respectively) than in Ctrl-Veh mice (0.067±0.002 and 0.082±0.002 g/cm, respectively). Hydroxychloroquine treatment reduced significantly (P<0.05) both cardiac and renal indices only in SLE mice (0.066±0.002 and 0.085±0.002 g/cm, respectively), whereas...
the antioxidant mixture was without effect (0.076±0.004 and 0.111±0.007 g/cm, respectively).

Total plasma anti-dsDNA (IgG) antibodies were significantly (P<0.01) greater in SLE mice (107±8 ng/mL) compared with control mice (56±8 ng/mL) as reported previously. As expected, treatment with hydroxychloroquine did not modify the levels of anti-dsDNA in SLE (101±10 ng/mL) and control animals (64±16 ng/mL). Similarly, antioxidant treatment did not alter this parameter in SLE mice (98±13 ng/mL).

No significant differences in plasma glucose were observed among groups (Ctrl-Veh, 100±3 mg/dL; control treated with hydroxychloroquine, 99±3 mg/dL; SLE-Veh, 96±8 mg/dL; SLE-HCQ, 95±7 mg/dL; and SLE treated with tempol and apocynin, 97±6 mg/dL).

To test whether systemic oxidative stress is modified by treatments, we measured plasma malondialdehyde. There were no differences in plasma glucose were observed among groups (Ctrl-Veh, 100±3 mg/dL; control treated with hydroxychloroquine, 99±3 mg/dL; SLE-Veh, 96±8 mg/dL; SLE-HCQ, 95±7 mg/dL; and SLE treated with tempol and apocynin, 97±6 mg/dL).

To determine the immunomodulatory actions of hydroxychloroquine, we measured the levels of B and T cells in spleens from all experimental groups (Figure S1 in the online-only Data Supplement). No significant changes were observed among groups in both total T (Figure S1A) and B (Figure S1B) cells. However, the percentage of regulatory T cells and Th17 were increased in splenocytes from SLE mice. Hydroxychloroquine treatment decreased the percentage of both T-cell types, the antioxidant mixture being without effect. There were no differences in the percentages of Th1 cells in the spleens from all experimental groups (Figure S2).

Effects of Hydroxychloroquine on Renal Injury

Urinary Protein Excretion

Urinary protein excretion was increased in SLE mice compared with controls and significantly reduced with hydroxychloroquine treatment (Figure 2A), the combination of antioxidants being without effect.

Morphological Results

The comparative study of renal injury in different mouse groups is shown in Table S2, and representative micrographs are shown in Figure 2B. SLE-Veh group showed diffuse and segmental endocapillary and mesangial hypercellularity, matrix expansion with hyalinosis, capillary wall thickening with wire-loop lesions, hyaline thrombi in lumen of tuft capillary, early segmental capillary necrosis, and moderate extracapillary proliferation (crescent in 62% of glomeruli). Scattered glomerular cyst could also be observed. Cortical tubules showed numerous hyaline casts and moderate/severe clusters of renal papillae and tubulointerstitial chronic inflammatory infiltrate. The percentage of glomeruli exhibiting a severe mesangial sclerosis area was 54.5% in SLE-Veh mice; in contrast, only a moderate mesangial sclerosis was observed in 8.3% of SLE-HCQ mice. Mesangial hyalinization, extracapillary proliferation (crescent), wire loop, fibrinoid necrosis, casts and inflammatory infiltrate, and tubular casts were greater in SLE-Veh mice compared with control mice. SLE-HCQ mice had only mild glomerular lesions (mesangial hyalinization and fibrinoid necrosis) and almost no extracapillary crescents and tubulointerstitial lesions. Thus, SLE mice treated with hydroxychloroquine showed a significant reduction of hyalinization (P=0.003), fibrinoid necrosis (P=0.01), and crescents (P=0.047, Mann–Whitney U test). In contrast, antioxidant treatment did not reduce the inflammatory infiltrate, mesangial hyalinization, or fibrinoid necrosis.

Figure 2. Effects of chronic hydroxychloroquine (HCQ) and antioxidant (Antiox; tempol+apocynin) treatment on proteinuria ([A] and morphological renal cortex features ([B]) systemic lupus erythematosus (SLE) mice. a, Normal renal parenchyma in control group. b, Absence of glomerular or tubulointerstitial lesions in control HCQ-treated mice. c, SLE group with diffuse mesangial hyalinosis (green color), fucsinophil deposits, and crescents in glomeruli and hyaline casts in tubules. d, Persistence of mild/moderate mesangial hyalinosis in the absence of other parenchymatous injuries in SLE treated with hydroxychloroquine (SLE-HCQ) group. e, Detail of normal renal glomerulus in control group. f, Detail of mesangial hyalinosis, fucsinophil immunocomplex deposits (asterisk), and crescents (arrowhead) in SLE mice. g, Detail of mesangial hyalinosis in SLE-HCQ mice. h, Persistence of small fucsinophil immunocomplex deposits (asterisk) in SLE treated with Antiox (SLE-Antiox) mice (Masson trichrome; a and b, magnification ×2; c and d, magnification ×4; e–h, magnification ×40). Experimental groups: Control (n=17), control treated with HCQ (Control-HCQ; 10 mg/kg per day; n=10), SLE untreated (n=11), SLE-HCQ (n=13), SLE-Antiox (n=7). Values are expressed as mean±SEM (n=7–17). **P<0.01 as compared with the control group. ##P<0.01 as compared with the SLE-vehicle group.
(maximal effect, 33.3±6.5% versus 57.5±6.1% in the control group; P<0.05). The treatment of SLE mice with hydroxychloroquine or antioxidants showed an increase in the acetylcholine-induced vasodilation as compared with vehicle-treated SLE mice (maximal effect, 56.0±5.6%; P<0.05 and 58.0±7.9%; P<0.05, respectively; Figure 3A).

These relaxant responses were suppressed by incubation for 30 minutes with the NO synthase (NOS) inhibitor Nω-nitro-arginine methyl ester (l-NAME) in all experimental groups (Figure 3B). Incubation with tempol for 30 minutes increased the response to acetylcholine in rings from SLE-Veh mice (Figure 3C). We also found increased contractile response to phenylephrine in endothelium-intact aortic rings from SLE mice (maximal effect, 9.7±0.8 mN) as compared with control mice (maximal effect, 6.5±0.4 mN; P<0.01), control treated with hydroxychloroquine (maximal effect, 6.8±0.6 mN; P<0.01; Figure 3D). No significant differences in this contractile response to phenylephrine between SLE-Veh and Ctrl-Veh groups were found when the rings were incubated in the presence of l-NAME (Figure 3E). Hydroxychloroquine or antioxidant treatments suppressed the hyper-responsiveness to phenylephrine in intact rings (maximal effect, 5.9±0.7 mN; P<0.01 and 5.5±1.2 mN; P<0.01, respectively; Figure 3D). This inhibitory effect was abolished by l-NAME, suggesting a higher NO formation in these vessels compared with those from SLE mice. No differences were observed among all experimental groups in the endothelium-independent relaxant response to sodium nitroprusside (Figure 3F).

Effects of Hydroxychloroquine on Vascular ROS Levels and NADPH Oxidase Activity

To characterize and localize ROS levels within the vascular wall, ethidium red fluorescence was analyzed in sections of aorta incubated with dihydroethidium. Positive red nuclei could be observed in adventitial, medial, and endothelial cells from sections of aorta incubated with dihydroethidium (Figure 4A). In preliminary experiments, dihydroethidium fluorescence was almost abolished by tiron (O2·- scavenger) and pegylated superoxide dismutase. The inhibitory effect of both O2·- scavengers suggests that the primary source of oxidant stress is likely to be O2·-. Rings from SLE-Veh group showed marked increased staining in adventitial, medial, and endothelial cells as compared with Ctrl-Veh group, which was significantly reduced by both hydroxychloroquine and antioxidant treatment (Figure 4A and 4B).

NADPH oxidase activity was increased in aortic rings from SLE-Veh mice as compared with control mice (Figure 4C). Chronic treatment with hydroxychloroquine or the antioxidant mixture significantly reduced the NADPH oxidase activity in SLE mice.

Effects of Hydroxychloroquine on Vascular Gene Expression and on NO Activity

Endothelial NOS (eNOS) mRNA expression was similar among all experimental groups (Figure 5A). Significant mRNA overexpression of NADPH oxidase subunits NOX-1 (Figure 5B) and p47phox (Figure 5C), without change of p22phox (Figure 5D), were observed in aortic tissues from SLE-Veh as compared with control mice. Hydroxychloroquine and antioxidant treatment reduced gene expression of both subunits in SLE but not in control mice.

The phosphorylation of vasodilator-stimulated phosphoprotein was measured and used as an estimate of NO levels. Reduced vasodilator-stimulated phosphoprotein phosphorylation was found in aorta from SLE-Veh group as compared with the control group. Both hydroxychloroquine and antioxidants increased the levels of this biochemical marker for monitoring NO in SLE mice (Figure 5E).
Discussion

In the present study, we investigated whether the antimalarial drug hydroxychloroquine therapy reduces cardiovascular complications in a model of autoimmune disease with hypertension. The major new findings of the present study are as follows: (1) chronic hydroxychloroquine reduced the elevated SBP, (2) it reduced heart and kidney hypertrophy, (3) it restored endothelial function in SLE, and (4) these protective effects seem to be related to decreased ROS production as a result of NADPH oxidase subunit downregulation and increased NO bioavailability. Likewise, the effects of hydroxychloroquine on endothelial function were mimicked by a mixture of antioxidants. This study also confirms that hydroxychloroquine treatment did not alter SLE disease activity (assessed by plasma dsDNA autoantibodies) in the mice model and prevented the morphological lesions and proteinuria found in SLE mice.

SLE is associated with a high prevalence of hypertension.6,35 This increase in blood pressure does not seem to be dependent on glomerulonephritis that is also highly prevalent in individuals with SLE.36–38 In our experiment, hydroxychloroquine treatment of SLE mice partially reduced the glomerular lesions and almost fully prevented the extracapillary crescents and tubulointerstitial lesions and proteinuria and reduced SBP. A mixture of antioxidants containing tempol and apocynin was used for comparative purposes. This antioxidant treatment reduced SBP as previously described but was unable to prevent the renal lesions, which contrasts with data previously found in this same model of SLE.16 Thus, our results are in agreement with the hypothesis that SLE is a risk factor for hypertension and can be controlled independently of nephritis.39

Our results are also consistent with previous evidences showing that hydroxychloroquine did not reduce plasma anti-DNA

Figure 4. Effects of chronic hydroxychloroquine (HCQ) and antioxidant (Antiox; tempol+apocynin) treatment on in situ localization of O$_2^-$ and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity in aortic rings. A, Left, Arteries incubated in the presence of dihydroethidium (DHE) which produces a red fluorescence when oxidized to ethidium by O$_2^-$. Right, Blue fluorescence of the nuclear stain 4,6-diamidino-2-phenylindole dichlorohydridate (DAPI; magnification ×400). B, Averaged values, mean±SEM (n=5–6), of red ethidium fluorescence normalized to blue DAPI. C, NADPH oxidase activity measured by chemiluminescence with lucigenin. Experimental groups: Control (n=17), control treated with HCQ (Control-HCQ; 10 mg/kg per day; n=10), systemic lupus erythematosus untreated (SLE; n=11), SLE treated with HCQ (SLE-HCQ; n=13), SLE treated with Antiox (SLE-Antiox; n=7). Values are expressed as means±SEM (n=7–17). **P<0.01 vs control group. ##P<0.01 vs SLE group.

Figure 5. mRNA expression of endothelial nitric oxide synthase (eNOS; A), NOX-1 (B), p47phox (C), p22phox (D), and vasodilator-stimulated phosphoprotein (VASP) phosphorylation (E) in aortic rings from all experimental groups. Data are presented as a ratio of arbitrary units of mRNA (2$^{-}\Delta\Delta^Ct$) or phospho-VASP/actin ratio compared with control. Values are expressed as means±SEM (n=7–17). Experimental groups: Control (n=17), control treated with HCQ (Control-HCQ; 10 mg/kg per day; n=10), systemic lupus erythematosus untreated (SLE; n=11), SLE treated with HCQ (SLE-HCQ; n=13), SLE treated with Antiox (SLE-Antiox; n=7). **P<0.01 as compared with the control group. #P<0.05 and ##P<0.01 as compared with the SLE group.
Inflammatory responses in the endothelium induced by circulating autoantibodies and other inflammatory mediators are known to contribute to the pathogenesis of endothelial dysfunction, and numerous studies implicate cytokines in the progression of SLE. However, the molecular mechanisms involved in endothelial dysfunction in SLE mice have never been analyzed. NO secretion is required for normal endothelial-dependent vasodilatation. Patients with SLE display a defect in the function of eNOS in endothelial cells. We found that endothelium-dependent relaxations induced by acetylcholine were abolished by eNOS inhibition with l-NAME. Moreover, increased contractile responses to phenylephrine were observed in aorta from SLE-Veh group as compared with control mice, which were suppressed by l-NAME, suggesting a defect in NO pathway in SLE mice. However, changes in both acetylcholine-mediated relaxation and phenylephrine-induced contraction in SLE mice do not seem to be related to changes in eNOS mRNA expression, suggesting no changes in NO production under basal or stimulated conditions. However, a detailed analysis of eNOS protein levels, phosphorylation state, and NO release will be required to definitively answer this question. Interestingly, the improvement in both acetylcholine relaxation and phenylephrine contractions induced by hydroxychloroquine in SLE was suppressed by l-NAME, suggesting that hydroxychloroquine improved the eNOS pathway in aortic tissue. This protective effect seems to be unrelated to changes in eNOS mRNA expression and also to changes in the sensitivity to the NO-cGMP pathway because the vasodilator response to the NO donor, nitroprusside, was unaffected by hydroxychloroquine treatment.

A previous in vitro study reported that hydroxychloroquine inhibited O$_2^-$ production on human polymorphonuclear neutrophils stimulated by opsonized zymosan, phorbol myristate acetate, or fluoride. Herein, we show that hydroxychloroquine not only inhibits the activity, but also the expression of ν-production on human polymorphonuclear neutrophils stimulated by opsonized zymosan, phorbol myristate acetate, or fluoride. Herein, we show that hydroxychloroquine not only inhibits the activity, but also the expression of

\[\text{Nitric Oxide} \ (\text{NO}) \]

\[\text{Hydroxychloroquine} \ (\text{HCQ}) \]

\[\text{eNOS} \]

\[\text{ROS} \]

\[\text{NO} \]

\[\text{HCQ} \]

\[\text{NO} \]
vascular tissue, our data suggest increased NO bioavailability after both treatments. Taken together, the results suggest that the reduction of O$_2^-$ derived from NADPH oxidase in the vascular wall and the subsequent prevention of NO inactivation constitute the main mechanisms involved in its protective effects on endothelial function. However, other changes in antioxidant defense system could be involved in the reduced vascular ROS level found in SLE-HCQ group. The potential contribution of these mechanisms in hydroxychloroquine treatment has not been established here.

In conclusion, our study demonstrates that in SLE mice, chronic hydroxychloroquine treatment improves endothelium-dependent relaxation, essentially by preserving the NO-mediated component, and reduces SBP. This protective effect may be attributable to a decrease in the vascular oxidative stress by normalizing the expression of NADPH oxidase subunits.

Perspectives

We suggest that these vascular effects, together with the anti-aggregant actions, the improvement of the dyslipidemia, and the glucose intolerance induced by hydroxychloroquine, are involved in the lower incidence of thromboembolic disease found in hydroxychloroquine-treated SLE patients. Moreover, these results reinforce the notion that hydroxychloroquine should be used not only in patients with mild SLE disease, but also in those with major organ involvement.

Sources of Funding

This work was supported by grants from Comisión Interministerial de Ciencia y Tecnología (SAF2010-22066-C02-01, SAF2011-28150), Junta de Andalucía (Proyecto de excelencia, P12-CTS-2722), Ministerio de Ciencia e Innovación Campus de Excelencia Internacional (Programa GREIB), and Ministerio de Economía y Competitividad, Instituto de Salud Carlos III (Red HERACLES RD06/0009, RIC RD12/0042/0011 and RD12/0042/0040), Spain. M.J. Zarzuello is a holder of studentship from Spanish Ministry of Science and Education.

Disclosures

None.

References

ONLINE SUPPLEMENT

CHRONIC HYDROXYCHLOROQUINE IMPROVES ENDOTHELIAL DYSFUNCTION AND PROTECTS KIDNEY IN A MOUSE MODEL OF SYSTEMIC LUPUS ERYTHEMATOSUS.

Manuel Gómez-Guzmán, Rosario Jiménez, Miguel Romero, Manuel Sánchez, María José Zarzuelo, Mercedes Gómez-Morales, Francisco O’Valle, Antonio José López-Farré, Francesca Algieri, Julio Gálvez, Francisco Pérez-Vizcaíno, José Mario Sabio, Juan Duarte

From the Department of Pharmacology (M.G.-G., R.J., M.R., M.S., M.J.Z., F.A., J.G., J.D.), School of Pharmacy, and Department of Pathology (M.G.-M., F.O.), School of Medicine, University of Granada, Granada, Spain; Cardiovascular Research Unit, Hospital Clínico San Carlos (A.J.L.-F.), and Department of Pharmacology, School of Medicine and Ciber Enfermedades Respiratorias (Ciberes) (F.P.-V.), University Complutense of Madrid, Madrid, Spain; Internal Medicine Service, Universitary Hospital Virgen de las Nieves, Granada, Spain (J.M.S.).

Short Title: Hydroxychloroquine in SLE hypertension.

Corresponding author: Juan Duarte. Department of Pharmacology, School of Pharmacy, University of Granada, 18071 Granada, Spain. Tel: (34)-958241791, Fax: (34)-958248264, Email: jmduarte@ugr.es
Materials and Methods

Animals and experimental groups

The investigation conforms to the National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals and our Institutional Guidelines for the ethical care of animals. Thirty-week-old female NZBWF1 (SLE) and NZW/LacJ (control) mice obtained from Jackson Laboratories (Bar Harbor, ME) were randomly assigned to receive by oral gavage HCQ (10 mg/kg/day) or vehicle (1mL of 1% methylcellulose), or a combination of the antioxidants tempol (2.0 mmol/L) and apocynin (1.5 mmol/L) in the drinking water (1) for 5 weeks. We used a high dose of HCQ, as compared to that used in human (200-400 mg/day), but for a short time period. Urine was collected and assessed for the presence of proteinuria, as described previously (2). Only mice with no sign of albuminuria at 30 weeks of age were included in the study. Animals were maintained at a constant temperature (24 ± 1 ºC), with a 12-hour light/dark cycle, on a standard chow and water ad libitum. Mice were randomly divided into five groups: control-untreated (Ctrl-Veh), control treated with HCQ (Ctrl-HCQ), SLE-untreated (SLE-Veh), SLE treated with HCQ (SLE-HCQ), and SLE treated with tempol and apocynin (SLE-Antiox).

Anti-dsDNA and malonyldialdehyde

Plasma anti-dsDNA antibodies were measured as described previously (3). Only NZBWF1 mice with positive anti-ds-DNA antibodies (at values ≥ 1 SD from control) were considered to have SLE. Plasma malonyldialdehyde (MDA) content was evaluated as previously described (4). Briefly, 100 µl of plasma reacted with a chromogenic reagent, 1-methyl-2-phenylindole (10.3 mmol/L) in acetonitrile and 37% aqueous HCl (10.4 M). After incubation of the reaction mixture for 40 minutes in a 45ºC water bath, the absorbance was measured at 586 nm in a GBC 920 spectrophotometer.

Blood pressure measurements

Systolic blood pressure (SBP) was measured in conscious mice by tail-cuff plethysmography (Digital Pressure Meter LE 5001, Panlab) as described previously (2). Briefly, mice were held in a plastic tube, and their tail was put through a rubber cuff, and the cuff was inflated with air. The pressure level at which the first pulse appeared, after blood flow had been interrupted with the inflated cuff, was designated SBP. At least seven determinations were made in every session and the mean of the lowest three values within 5 mmHg was taken as the SBP. At the end of the experimental period, a polyethylene catheter containing 100U heparin in isotonic, sterile, NaCl solution was inserted into the left carotid artery in some mice. Twenty-four hours after implantation of the catheter, intra-arterial BP and heart rate (HR) were recorded continuously for 60 min with a sampling frequency of 400/s (McLab; AD Instruments, Hastings, UK). BP and HR values obtained during the last 30 min were averaged for intergroup comparisons.

Physical characteristics, cardiac and renal weight indices

Body weight (in grams) was measured for all the mice. At the end of the experimental period, the animals were euthanized and dissected. The hearts were excised; the atria and the right ventricle were then removed and the remaining left ventricles weighed.
The left ventricular and kidney weight indices were calculated by dividing the left ventricle and kidney weight by the tibia length.

Assessment of renal injury. Proteinuria

Mice were placed in metabolic cages to collect urine for 24 h. When the experimental period was completed, all mice were housed in metabolic cages with free access to food and their respective drinking fluids, and treatments were continued for 4 days (2 days for adaptation and 2 experimental days) to collect urine samples. Proteinuria was determined as previously described (5), using bovine serum albumin as standard and the results were expressed as mg of protein excreted, normalized by body weight (per 100 g of mice), and time (during 24 h). The means of the values obtained during the 2 experimental days were used for statistical analyses between groups.

Histopathological techniques

Kidney biopsies were fixed in 10% buffered formalin for 24 hrs, and embedded in paraffin. Then, 4-µm sections were cut along the central axis of the biopsies and dewaxed and hydrated for staining with hematoxylin-eosin, Peryodic Acid Schiff, and Masson’s trichrome. The presence of SLE-like lesions, such as glomerular sclerosis, mesangial proliferation, glomerular hypercellularity, extracapillary proliferation (crescent formation), capillary wire-loop lesion, fibrinoid necrosis in glomerular capillary and arterioles, interstitial inflammatory infiltrate and tubular casts were studied. Morphological study on light microscopy was done in a blinded fashion (MGM and FO). Results were calculated semiquantitatively using a 0 to 3 scale (0, absence; 1, mild [<10% of glomeruli or tubules injured]; 2, moderate [10 to 25%]; 3, severe [>25%]) (2).

Vascular contractility in vitro

Descending thoracic aortic rings were dissected from animals and were suspended in a wire myograph (model 610M, Danish Myo Technology, Aarhus, Denmark) for isometric tension measurement as previously described (6). The organ chamber was filled with Krebs solution (composition in mM: NaCl 118, KCl 4.75, NaHCO3 25, MgSO4 1.2, CaCl2 2, KH2PO4 1.2 and glucose 11) at 37 ºC and gassed with 95% O2 and 5% CO2 (pH ∼ 7.4). Length–tension characteristics were obtained via the myograph software (Myodaq 2.01) and on the basis of these, aorta arteries were loaded to a tension equivalent to 0.5 g.

In endothelium-intact aorta, cumulative concentration-response curves to phenylephrine (10⁻⁹ M-10⁻⁶ M) were performed in the absence or in the presence of N⁶-nitro-L-arginine methyl ester (L-NAME, 100 µM), or tempol (1 µM). The concentration-relaxation response curves to acetylcholine (10⁻⁸ M-10⁻⁶ M) were performed in intact rings precontracted by phenylephrine to obtain similar level of precontraction in both control or L-NAME treated aortic rings. The relaxant responses to sodium nitroprusside (10⁻⁹ M-10⁻⁵ M) were studied in the dark in endothelium-denuded vessels precontracted by phenylephrine (10⁻⁶ M). Relaxant responses to acetylcholine and sodium nitroprusside were expressed as a percentage of precontraction induced by phenylephrine. Aorta was denuded of endothelium by gently rubbing the intimal surface with a needle.
absence of functional endothelium was tested by observing no relaxant response to acetylcholine (10⁻⁶ M).

In situ detection of vascular ROS levels

Unfixed thoracic aortic rings were cryopreserved (phosphate buffer solution 0.1 mol/L, PBS, plus 30% sucrose for 1-2h), included in optimum cutting temperature compound medium (Tissue-Tek; Sakura Finetechincal, Tokyo, Japan), frozen (-80°C), and 10 μm cross sections were obtained in a cryostat (Microm International Model HM500 OM). Sections were incubated for 30 min in Hepes buffered solution containing dihydroethidium (DHE, 10⁻⁵ M), counterstained with the nuclear stain 4,6-diamidino-2-phenylindole dichlorohydrate (DAPI, 3 x 10⁻⁷ M) and in the following 24 h examined on a fluorescence microscope (Leica DM IRB, Wetzlar, Germany). Representative DHE staining fields of each slide were photographed at x 400 magnification, and ethidium and DAPI fluorescence were quantified using ImageJ (version 1.32j, NIH, http://rsb.info.nih/ij/). ROS level was estimated from the ratio of ethidium/DAPI fluorescence (2).

Vascular NADPH oxidase activity

The lucigenin-enhanced chemiluminescence assay was used to determine NADPH oxidase activity in intact aortic rings, as previously described (4). Aortic rings from all experimental groups were incubated for 30 minutes at 37 ºC in HEPES-containing physiological salt solution (pH 7.4) of the following composition (in mM): NaCl 119, HEPES 20, KCl 4.6, MgSO₄ 1, Na₂HPO₄ 0.15, KH₂PO₄ 0.4, NaHCO₃ 1, CaCl₂ 1.2 and glucose 5.5. Aortic production of O₂⁻ was stimulated by addition of NADPH (100 μM). Rings were then placed in tubes containing physiological salt solution, with or without NADPH, and lucigenin was injected automatically at a final concentration of 5 μM to avoid known artifacts when used a higher concentrations. NADPH oxidase activity was determined by measuring luminescence over 200 s in a scintillation counter (Lumat LB 9507, Berthold, Germany) in 5-s intervals and was calculated by subtracting the basal values from those in the presence of NADPH. Vessels were then dried, and dry weight was determined. NADPH oxidase activity is expressed as relative luminescence units (RLU)/min/mg dry aortic tissue.

Flow Cytometry

Spleens were collected from mice. The tissues were smashed with wet slides very well to decrease friction and then the solutions were filtered through a cell strainer of 70μM. Cells were isolated followed by lysis of red blood cells with Gey’s solution. 1×10⁶ cells were counted and submitted to FcγR blocking by treatment with the incubation in a plate prepared one day in advance with a solution of anti-CD3 (clone17A2, eBioscience) and anti-CD28 (clone 37.51, eBioscience). After 24 hours, a protein transport inhibitor (BD GolgiPlug™), was added to the plate for an optimum detection of intracellular cytokines by flow cytometry. After that, the cells were transferred to polystyrene tubes for the surface staining with mAbs anti-CD4 (PerCP-Cy™, clone
RM4-5 BD Pharmigen™) and anti-B220 (APC, clone RA3-6B2, BD Pharmigen™) for 15 min at 4°C in the dark. The splenocytes were then fixed, permeabilized with the Fix/Perm Fixation/Permeabilization kit (eBioscience) and intracellular staining was made with mAbs anti-Foxp3 (PE,clone FJK-16s, eBioscience), anti-IL-17A (PE-Cy7, clone eBio17B7, eBioscience) and anti-IFNγ (Alexa Fluor® 488, clone XMG1.2, eBioscience) for 30 min at 4°C in the dark. Data collection was performed using a flow cytometer CANTO II (BD Biosciences).

Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis

For RT-PCR analysis, total RNA was extracted from the aorta by homogenization and converted to cDNA by standard methods. Polymerase chain reaction was performed with a Techne Techgene thermocycler (Techne, Cambridge, UK). A quantitative real-time RT-PCR technique was used to analyze mRNA expression of eNOS, p22phox, p47phox, and NOX1. The sequences of the sense and antisense primers used for amplification are described in Table S1. Preliminary experiments were carried out with various amounts of cDNA to determine nonsaturating conditions of PCR amplification for all the genes studied. Therefore, under these conditions, relative quantification of mRNA was assessed by the RT-PCR method used in this study. The efficiency of the PCR reaction was determined using a dilution series of a standard vascular sample. Quantification was performed using the ∆∆Ct method. The housekeeping gene β-actin was used for internal normalization (4).

Western blotting analysis

Aortic homogenates were run on a sodium dodecyl sulphate (SDS)-polyacrilamide electrophoresis. Proteins were transferred to polyvinylidene difluoride membranes (PVDF), incubated with primary monoclonal mouse anti-phospho-vasodilator-stimulated phosphoprotein (VASP)-Ser239 antibody (Calbiochem, Darmstadt, Germany) overnight and with the correspondent secondary peroxidase conjugated antibody. Antibody binding was detected by an ECL system (Amersham Pharmacia Biotech, Amersham, UK) and densitometric analysis was performed using Scion Image-Release Beta 4.02 software (http://www.scioncorp.com) (4). Samples were re-probed for expression of smooth muscle α-actin.

Statistical analysis

Results are expressed as means ± SEM. Statistical analyses were performed using Graph Pad Prism 5 software. A two-factor ANOVA was used to test for drug or group interactions. When a significant interaction was detected, one-way ANOVA with a Student-Newman-Keuls post hoc test was used to discern individual differences between groups. Significance was accepted at p<0.05.
References

<table>
<thead>
<tr>
<th>mRNA targets</th>
<th>Descriptions</th>
<th>Sense</th>
<th>Antisense</th>
</tr>
</thead>
<tbody>
<tr>
<td>p47phox</td>
<td>p47phox subunit of NADPH oxidase</td>
<td>ATGACAGCCAGGTGAAGAAGC</td>
<td>CGATAGGTCTGAAGGCTGATGG</td>
</tr>
<tr>
<td>p22phox</td>
<td>p22phox subunit of NADPH oxidase</td>
<td>GCGGTGTGGACAGAAGTACC</td>
<td>CTTGGGTTTAGCTCAATGG</td>
</tr>
<tr>
<td>eNOS</td>
<td>Endothelial nitric oxide synthase</td>
<td>ATGGATGAGCCAACTCAAGG</td>
<td>TGTCGTGTAATCGGTCTTGC</td>
</tr>
<tr>
<td>NOX-1</td>
<td>NOX-1 subunit of NADPH oxidase</td>
<td>TCTTGCTGGTGACACTTGC</td>
<td>TATGGAGTGGAATTTGG</td>
</tr>
<tr>
<td>Actb</td>
<td>Beta actin</td>
<td>AATCGTGCAGTCAAAAG</td>
<td>ATGCCACAGTTCCATACC</td>
</tr>
</tbody>
</table>
Table S2. Effects on renal injury.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Ctrl-Veh group (n = 10)</th>
<th>Ctrl-HCQ group (n = 16)</th>
<th>SLE-Veh group (n = 11)</th>
<th>SLE-HCQ group (n = 12)</th>
<th>SLE-Antiox group (n = 6)</th>
<th>p-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesangial hyalinosis</td>
<td>0.50±0.23</td>
<td>0.60±0.23</td>
<td>1.72±0.24</td>
<td>0.75±0.18</td>
<td>1.33±0.36</td>
<td>0.002*†‡</td>
</tr>
<tr>
<td>Crescents</td>
<td>0.06±0.06</td>
<td>0.00±0.00</td>
<td>0.81±1.50</td>
<td>0.08±0.08</td>
<td>0.33±0.23</td>
<td>0.017*†‡</td>
</tr>
<tr>
<td>Hyalin trombi</td>
<td>0.18±0.10</td>
<td>0.20±0.21</td>
<td>0.63±0.38</td>
<td>0.25±0.26</td>
<td>0.16±0.18</td>
<td>0.759</td>
</tr>
<tr>
<td>Wire-loop</td>
<td>0.06±0.06</td>
<td>0.10±0.10</td>
<td>0.54±0.25</td>
<td>0.08±0.08</td>
<td>0.00±0.00</td>
<td>0.104†</td>
</tr>
<tr>
<td>Glomerular hypercellularity</td>
<td>0.43±0.18</td>
<td>0.20±0.14</td>
<td>0.90±0.29</td>
<td>0.66±0.19</td>
<td>0.50±0.24</td>
<td>0.254‡</td>
</tr>
<tr>
<td>Glomerular fibrinoid necrosis</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>1.27±0.34</td>
<td>0.25±0.18</td>
<td>1.33±0.46</td>
<td>0.000*†‡§</td>
</tr>
<tr>
<td>Tubular casts</td>
<td>0.3±0.22</td>
<td>0.30±0.16</td>
<td>1.09±0.38</td>
<td>0.41±0.15</td>
<td>0.83±0.52</td>
<td>0.280*</td>
</tr>
<tr>
<td>Inflammatory infiltrate</td>
<td>0.12±0.08</td>
<td>0.00±0.00</td>
<td>1.81±0.31</td>
<td>1.25±0.18</td>
<td>2.16±0.52</td>
<td>0.000†‡§</td>
</tr>
<tr>
<td>Vascular fibrinoid necrosis</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.036±0.16</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.002*†‡</td>
</tr>
</tbody>
</table>

Values are expressed as mean±standard error. KW: Kruskal-Wallis test; *p<0.05 Mann-Whitney U-test systemic lupus erythematosus (SLE) group vs SLE-hydroxychloroquine (HCQ) group; †p<0.05 Mann-Whitney U-test SLE group vs control (Ctrl)-HCQ group; ‡p<0.05 Mann-Whitney U-test SLE group vs Ctrl group; §p<0.05 Mann-Whitney U-test antioxidant (SLE-Antiox) group vs SLE-HCQ group.
Figure S1. Effects of chronic Hydroxychloroquine (HCQ) and antioxidant (Antiox; tempol + apocynin) treatment on total T (CD4+) (A) and B (B220+) (B) lymphocytes, and Treg (CD4+ FOXP3+), Th17 (CD4+ IL17+), and Th1 (CD4+ IFNγ+) cells (C) measured in spleens from all experimental groups measured by flow cytometry. Experimental groups: Control (n = 5), SLE (Systemic lupus erythematosus, n = 5), SLE-HCQ (10 mg/kg/day, n = 5), SLE-Antiox (n = 5). Values are expressed as mean ± SEM (n = 5). **p<0.01 and *p<0.05 vs control group. #p<0.05 vs SLE group.
Figure S2. Effects of chronic Hydroxychloroquine (HCQ) and antioxidant (Antiox; tempol + apocynin) treatment on plasma malonyldialdehyde (MDA) from control and systemic lupus erythematosus (SLE) mice. Experimental groups: Control (n = 8), SLE (Systemic lupus erythematosus, n = 7), SLE-HCQ (10 mg/kg/day n = 8), SLE-Antiox (n = 7). Values are expressed as mean ± SEM (n = 7-8). **p<0.01 vs control group. ##p<0.01 and #p<0.05 vs SLE group.