Protein S deficiency and novel oral anticoagulants: An intriguing case

Vitamin K dependent protein S (ProS) is a plasma glycoprotein with anticoagulant properties [1]. Its anticoagulant function is well established in the literature based on clinical data, its genetics and on laboratory assays. ProS is able to prolong the clotting time acting as a cofactor for activated protein C. Furthermore, since the 1980ies it is known that hereditary ProS deficiency (PSD) increases the risk of venous thrombosis in families with hereditary thrombophilia [2], later found to be mostly caused by mutations in its coding gene, PROS1. Indeed, mutations in PROS1 have been shown to confer more than a 7-fold increased risk of thrombosis in selected families with PSD [3]. The recent establishment of mice strains with mutations in ProS1 has emphasized the importance of ProS as a pleiotropic anticoagulant in vivo [4,5].

Nevertheless, although the view of ProS as an essential natural anticoagulant is well-grounded, we could consider that ProS is one of the components of the coagulation cascade that has brought more surprising discoveries in recent years. The seminal work by Dahlbäck demonstrating that ProS interacted with high affinity with the complement regulator C4b-binding protein (C4BP) and that a high molecular weight 1:1 ProS-C4BP complex was present in human plasma [6], was an early basis for the concept of hemostasis and inflammation as parts of a global response to damage, which has led to the present concept of thromboinflammation [7]. The C4BP-ProS complex has implications in PSD, which has been classified in three categories: type I corresponding to concentrations of total ProS antigen below the normal range (quantitative deficiency), type II being normal levels of a ProS with low activity (qualitative deficiency) and type III corresponding to a specific quantitative deficiency of free, uncomplexed ProS in plasma despite levels of total ProS antigen inside the normal range [1,8].

More recently, the discovery of ProS and GASP as ligands of receptor tyrosine kinases and the discovery of its growth-factor like properties have brought new functional horizons to ProS, including its important implication in apoptotic cell removal (efferocytosis) and “taming” of inflammatory reactions [4,8,9,10]. Its role as an anticoagulant has also been revised by the suggestion of new mechanisms, including the binding and effect of Zn²⁺ ions [11] and the ProS-dependent inhibition of factor Xa by TFPI [12]. From these studies, an antithrombotic activity of ProS that is independent of the action on activated protein C has been proposed and corroborated by in vivo studies in mice [4] and primates [13].

The study of the molecular basis of PSD has also provided some surprises. Studies of thrombophilia in different geographical areas have found that the incidence and type of PSD is very heterogeneous among populations [14]. In families with hereditary PSD where the traditional sequence technology failed to find a causative mutation, the use of new genetic screening techniques have discovered a relatively high frequency of small and large deletions in or close to the PROS1 locus [15,16]. Finally, relatively mild polymorphisms in PROS1 could manifest as causative mutations in combination with other thrombophilic factors, especially in combination with the FV Leiden mutation, suggesting that there could be possible mechanisms of prothrombotic synergy among common genetic variants [17,18].

In this context, the study by Wypasek et al. presents an interesting observation. The authors describe two families with severe familiar PSD due to a non-sense mutation and an insertion leading to a frame shift mutation. Both mutations predict truncated protein products. In both probands, plasma free ProS levels are very low, below 20% although in one case the total ProS level was inside the reference range, and should be considered a type III deficiency.

Both cases were treated with the new oral anticoagulant rivaroxaban, a selective direct factor Xa inhibitor. Interestingly, in both patients, thrombotic complications occurred under rivaroxaban therapy at two and five months of treatment respectively, and in consequence the antithrombotic therapy had to be modified. This observation could suggest that rivaroxaban is less effective for the treatment of thrombosis in patients with severe PSD. Nevertheless, the authors state that in their clinical experience with mild PSD patients (ie above 30% free ProS level) or in cases of protein C deficiency, the clinical response to rivaroxaban was similar to that observed in patients without thrombophilia.

At present, there are no large studies on the efficacy of each novel oral anticoagulant depending on specific causes of thrombophilia. Still, it is important to have in mind that the new oral anticoagulants interact with one specific target in the coagulation cascade (factor Xa for rivaroxaban), as opposed to the anti-vitamin K oral anticoagulants or heparins that interact with several coagulation factors. In principle, different genetic causes of thrombophilia could affect differently the effect of these drugs.

In the cases reported by Wypasek et al. in this issue of Thrombosis Research [19], one could speculate that the very low ProS concentration eliminates the natural inhibitory mechanism controlling factor Xa through TFPI. This could be aggravated by the fact that PSD patients show also decreased plasma concentration of TFPI [18]. Overall, these mechanisms could result in less control of the factor Xa activity generated in severe PSD patients compared to patients with a different prothrombotic origin.

Although it could now seem far-fetched, the combined knowledge on the specific causes of thrombophilia, their mechanisms of action, and how these mechanisms interact with different antithrombotic drugs could lead to personalized treatments that would be more efficient.

Conflict of Interest

The authors have no potential conflicts of interest.
References


Dolors Tàssies
Department of Hemotherapy and Hemostasis, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain

Pablo García de Frutos
Institute of Biomedical Research of Barcelona, IIBB-CSIC, IDIBAPS, Barcelona, Spain

Corresponding author at: Instituto de Investigaciones Biomédicas de Barcelona, CSIC c/Roselló 161,6p E08036 Barcelona, Spain

25 February 2014