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Abstract

The blood-brain barrier (BBB) is constituted by a specialized vascular endothelium that interacts
directly with astrocytes, neurons and pericytes. It protects the brain from the molecules of the
systemic circulation but it has to be overcome for the proper treatment of brain cancer,
psychiatric disorders or neurodegenerative diseases, which are dramatically increasing as the
population ages. In the present work we have revised the current knowledge on the cellular
structure of the BBB and the different procedures utilized currently and those proposed to cross
it. Chemical modifications of the drugs, such as increasing their lipophilicity, turn them more
prone to be internalized in the brain. Other mechanisms are the use of molecular tools to bind
the drugs such as small immunoglobulins, liposomes or nanoparticles that will act as Trojan
Horses favoring the drug delivery in brain. This fusion of the classical pharmacology with
nanotechnology has opened a wide field to many different approaches with promising results
to hypothesize that BBB will not be a major problem for the new generation of neuroactive
drugs. The present review provides an overview of all state-of-the-art of the BBB structure and
function, as well as of the classic strategies and these appeared in recent years to deliver drugs
into the brain for the treatment of Central Nervous System (CNS) diseases.
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Introduction

The precise communication between neurons requires the

isolation from the rest of the body achieved by the blood-brain

barrier (BBB), a highly specialized structure composed by

different cell types that controls the movement of molecules

from each compartment to the other. However in pathological

processes affecting to Central Nervous System (CNS), the

BBB hardly limits the targeting and delivery of the drugs used

in their treatment. Most of the adopted strategies are directed

to bypass the BBB permitting the drugs to reach its target

in the CNS and include invasive methods as direct injection

or even transient BBB disruption but the benefits do not

always overcome the risks (Begley, 2004). Therefore drug

design based on medicinal chemistry has been adopted.

This strategy consists of modifying the physicochemical

properties of the drug to increase its permeability across the

BBB and to improve its targeting to the CNS. Nowadays

nanotechnology-based approaches are raising as a procedure

to deliver drugs without worrying about the nature of the

molecules since they usually encapsulate any molecule,

which masks any limiting physicochemical deficiency

(Vlieghe & Khrestchatisky, 2013). In order to facilitate

CNS drug discovery, in vitro models could be implemented

by using primary culture or cell lines that mimic BBB

properties such as permeability, efflux pumps and high

electrical resistance (Wolburg & Lippoldt, 2002).

BBB structure and physiology

Neurons need a constant supply of oxygen and nutrients being

located no further than 8–20mm of distance from capillaries

(Schlageter et al., 1999) but brain homeostasis is critical and

necessary because neurons are sensitive to many compounds

and to subtle changes in their concentrations. To solve these

requirements brain vessels are modified forming the BBB,

a highly selective structural and biochemical barrier that

maintains the intracerebral milieu supplying nutrients to the

brain and protecting against environmental influences and

harmful external agents.

BBB structure

Although brain capillaries are morphologically similar to

those found in other tissues, brain vessels are functionally
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bound to the other cells of the brain parenchyma. BBB

consists of blood vessels built up by specialized endothelial

cells (ECs), astrocytes, pericytes, and neuronal terminations

(Abbott et al., 2006; Abbott & Romero, 1996; Risau &

Wolburg, 1990). Astrocytes lay their end-feet over the

continuous basal lamina and form a very restrictive barrier

(Abbott et al., 2006; Abbott & Romero, 1996). Pericytes, a

type of mesenchymal cell, occupy the perivascular space,

between the capillary wall and astrocytes end-feet, except in

the large vessels where smooth muscle cells replace them.

Pericytes play a regulatory role in vasculature tone, stability,

repair and angiogenesis (Kutcher & Herman, 2009), being

also able to modulate astroglial function (Tamai & Tsuji,

2000; Thomas, 1999). Finally, neurons are also participating

actively in this structure since neuronal terminations arrive to

all cells forming the BBB (Hellstrom et al., 2001; Kacem

et al., 1998) (Figure 1).

Characteristics of the BBB ECs. In order to achieve a more

restrictive permeability, BBB ECs have specific characteris-

tics compared to peripheral ECs: (i) A lower number

of endocytic vesicles, which limits the transcellular flux;

(ii) no fenestrations; (iii) high electrical resistance due to

tight junctions that restrict the amount of paracellular flux;

(iv) higher mitochondrial volume reflecting a high cell

metabolism; and, (v) specialized transport systems

(Brightman & Kadota, 1992; Rubin & Staddon, 1999). ECs

are surrounded by the basal lamina, produced by pericytes

(Lai & Kuo, 2005), an extracellular matrix containing

collagens, glycoproteins, laminins, proteoglycans and other

proteins (Abbott et al., 2006). Brain microvasculature

permeability is highly affected by modifications of the

basal membrane (Sarna et al., 1979) as occurs in stroke or

inflammation producing generally edema due to BBB

disruption (Perry et al., 1997).

The binding of the ECs. At the subcellular level, the main

components responsible for the structural integrity of the

BBB are the tight junctions (TJ) and the adherens junctions

(AJ). TJ seal the ECs forming a continuous tubular structure,

while the AJ play a major role in the initiation and

maintenance of EC contact. In peripheral ECs, the TJ are

placed apically and separated from AJ (Butt et al., 1990;

Staddon & Rubin, 1996) but in BBB ECs they are close to

each other (Schulze & Firth, 1993; Stamatovic et al., 2008),

forming the junction complex between adjacent ECs. The

junction complex consists of all the transmembrane proteins

and accessory cytoplasmic proteins located on the apical side

of the endothelium (Stamatovic et al., 2008). Transmembrane

proteins interact directly inside the junctional complex,

whereas cytoplasmic proteins serve as an anchor that binds

the transmembrane proteins with the actin cytoskeleton (Petty

& Lo, 2002). The high transendothelial electrical resistance

in brain endothelium (TEER; 42000 ohm cm2 compared

with 2–20 ohm cm2 resistance in peripheral capillaries)

(Butt et al., 1990) is due to a better occlusion of the

intercellular cleft by the TJ complex than in peripheral

capillaries (Wolburg & Lippoldt, 2002). TJ integrity depends

highly on intact AJ, where the cell–cell adhesion molecules

are found.

Tight junctions. Located in the upper part of the apical

section of the plasma membrane, TJ constitute the first and

the most important seal to prevent the paracellular diffusion

of solutes, also participating in the lateral diffusion regulation

between both apical and basolateral plasma membrane

domains maintaining plasma membrane protein and lipid

polarity (Brown & Stow 1996; Gumbiner, 1987). They are

composed of at least three major transmembrane proteins,

claudin, which is exclusively located in TJ and have four

membrane-spanning regions with two extracellular loops and

two intracytoplasmic termini (Furuse et al., 1999; Gonzalez-

Mariscal et al., 2000), occludin, a four-transmembrane

segment protein with two equal extracellular loops and three

intracytoplasmic domains (Balda et al., 2000), and junctional

adhesion molecules (JAMs), which belong to the immuno-

globulin superfamily (Bazzoni & Dejana, 2004; Petty & Lo,

2002). They all share a single transmembrane domain and two

large immunoglobulin-like loops (Williams et al., 1999).

JAMs are also involved in the physiological function of the

junctions related to monocyte extravasation (Palmeri et al.,

2000) (Figure 2 and Table 1).

Occludins bind to zonula occludens protein 1 (ZO-1)

through its C-terminal domain in all types of endothelium

(Furuse et al., 1999), but in brain endothelium ZO-1

distribution is more continuous (Hirase et al., 1997) and

there is a higher occludin expression. However, such high

levels are not sufficient to ensure high-resistance junctions, so

other levels of control are necessary to determine junctional

properties. There are reports suggesting that the state of

phosphorylation of junctional proteins could be involved in

their activity (Lampugnani et al., 1997; Maher & Pasquale,

1988; Risau & Wolburg, 1990; Sarna et al., 1979). Actually,

preliminary experiments show that occludin is more highly

phosphorylated in cultured brain ECs than in peripheral

ECs (Rubin & Staddon, 1999). Also, other proteins like the

catenin p120 and p100 can be phosphorylated under stimuli

that affect TJ permeability (Ratcliffe et al., 1997; Schlageter

et al., 1999).

The third major protein components of TJ are JAMs,

which belong to the immunoglobulin superfamily (Bazzoni &

Figure 1. The BBB and the neurovascular unit. The blood brain barrier
consist of a modified endothelium, which overexpresses tight junctions
and Adherens junctions, surrounded by pericytes, astrocytical processes
and neurons.
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Dejana, 2004). Beside these three major transmembrane

proteins, there are some TJ accessory cytoplasmic proteins,

distinguished by the presence or absence of a PDZ

motif (Stamatovic et al., 2008) (Table 1). The PDZ motif

is an 80–90 amino acid sequence located in carboxyl

terminal mediating interaction with other proteins. The

majority of the proteins included in this group have multiple

PDZ domains.

Adherens junctions

AJ are essential in the maintenance of TJ and the junctional

complex due to their role in keeping contiguous cells together.

The main components of the AJ are transmembrane

glycoproteins of the cadherin superfamily, mainly vascular

endothelium cadherin (Ve-cadherin), that are able to form

homotypic adhesive complexes with adjacent cells in the

presence of Ca2+ (Petty & Lo, 2002). The glycoproteins

are linked to the cytoskeleton through a cytoplasmic plaque

by anchor proteins from the Armadillo superfamily such as

a-catenin, bb-catenin, g-catenin and p120ctn (McCrea &

Gumbiner, 1991; Nagafuchi & Takeichi, 1989). They all

possess an Armadillo arm or repeat, which is a 42-aminoacid

sequence that mediates binding to the cytoplasmic tail of the

classical cadherins (Aono et al., 1999). A complex is formed

between a-, b-, and g-catenin, which is linked to the actin

cytoskeleton through a-catenin (Lampugnani et al., 1995).

Recently, a new catenin termed p120ctn was discovered

(Bazzoni, 2006). Its function is still unclear but it has been

reported that it presents a high affinity binding to Ve-cadherin

suggesting certain relevance in BBB permeability and

function (Bazzoni, 2006; Hatzfeld, 2005).

BBB maintenance. Transplantation experiments showed

that the microenvironment is important in the induction of

brain EC cellular properties (Schulze & Firth, 1993; Stewart

& Wiley, 1981), opening the research of factors that stimulate

BBB formation.

Astrocytes play a key role in BBB creation and mainten-

ance (Janzer & Raff, 1987; Wolburg & Lippoldt, 2002)

since astrocyte end-feet contact directly endothelial cells in a

netlike structure (Kacem et al., 1998; Stanness et al., 1997).

These projections show specific features like a high density

of orthogonal arrays of particles (OAPs). They contain the

Table 1. Tight junction proteins.

Protein Function Reference

Claudin Generation of the high electrical resistance avoiding free access of
ions through paracellular diffusion, to contribute to the selective
regulation across TJ

Furuse et al. (1999)
Heiskala et al. (2001)

Ocludin Maintenance of high resistance to allow the flux of non-charged
solutes and to contribute to the selective diffusion regulation

Balda et al. (2000)
Hirase et al. (1997)
Nusrat et al. (2005)

JAMs Regulation of monocyte extravasation Palmeri et al. (2000)
Williams et al. (1999)

PDF motif
MAGUK (ZO-1, 2 and 3) Supporting and clustering many intracellular and cell surfaces

components in the TJs
Gonzalez-Mariscal et al. (2000)

Ponting et al. (1997)
Non PDF motif
Cingulin Cross-linker between TJ proteins and actin-myosin cytoskeleton Citi and Cordenonsi (1998)

Cordenonsi et al. (1999)
7H6 Maduration and maintainance of TJs Satoh et al. (1996)
ZONAB Regulation of Erb transcription and paracellular permeability Balda et al. (2000)

Satoh et al. (1996)
Rab13 Participation in the polarized transport at TJ complex Stamatovic (2008)

Tiwari and Amaji (2006)
PKC Involved in the regulation of polarization as well as in TJ assembly Yamanaka et al. (2001)
Heterotrimeric G protein TJ assembly and maintainance the transendothelial electrical

resistance.
Stamatovic et al. (2008)

Catenin (120 and p100) Regulation of TJ permeability. Ratcliffe et al. (1997)

Figure 2. The tight junctions. Structure of the main proteins that form
the tight junctions. They are proteins with extracellular domains
that mediate physical interactions and intracellular domains that
anchor to the cytoskeleton.
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water channel aquaporin 4 (AQP4) and the Kir4.1K+, which

endow BBB with ion and volume regulation capability.

The presence of these proteins in astrocytes correlates with

the expression of agrin, an heparan sulphate proteoglycan,

on the basal lamina (Verkman, 2002; Wolburg & Lippoldt,

2002). Agrin is involved in the integrity of BBB and

accumulates in brain microvessels when BBB tightens.

In vitro co-cultures of astrocytes and adult brain ECs achieve

high electrical resistances, a strong evidence of the astrocyte

effect in leading to tighter TJ (Dehouck et al., 1990; Hayashi

et al., 1997; Isobe et al., 1996; Stanness et al., 1997).

Astrocytes can regulate BBB characteristics, like the expres-

sion and polarized location of transporters such as

P-glycoprotein (Perry et al., 1997; Schinkel, 1999) and

GLUT1 (Abbott et al., 2006; McAllister et al., 2001), and

of specialized enzyme systems such as g-glutamyl transpepti-

dase (g-GTP) (Abbott, 2002; Haseloff et al., 2005; Hayashi

et al., 1997; Sobue et al., 1999).

The effect of astrocytes over ECs is exerted by the

secretion of numerous signalling molecules, including cyto-

kines such as IL-6, neurotrophins (Hawkins & Davis, 2005;

Ridet et al., 1997), and factors including transforming

growth factor-b (TGF-b), glial-derived neurotrophic factor

(GDNF) (Igarashi et al., 1999), basic fibroblast growth factor

(bFGF) and angiopoietin1 (ANG1) (Lee et al., 2003). But ECs

also exert an effect on astrocytes, enhancing their growth

and differentiation through the endothelium-derived leukae-

mia inhibitory factor (LIF) (Mi et al., 2001). These signalling

molecules will upregulate the endothelial enzyme gGTP

(Mizuguchi et al., 1997), antioxidant enzymes in EC and

astrocytes (Schroeter et al., 1999) and endothelial cAMP.

Particularly cAMP produces an immediate elevation of TJ

resistance via relaxation of the actin cytoskeleton (Brightman

& Kadota, 1992; Rubin et al., 1991). cAMP affects the

phosphorylation of myosin light chain, allowing a more

lax reorganization of the actin cytoskeleton; the resulting

weaker rearrangement of actin produces a strengthening of

the cell–cell contacts (Goeckeler & Wysolmerski, 1995).

Pericytes have been also reported to participate in the

growth and function of the endothelium (Hellstrom et al.,

2001). Furthermore microglia is necessary for the integrity

of the BBB and contributes in signalling and transcellular

transport processes (Lee et al., 2001; Pardridge, 1992).

BBB physiology

Nutrients, ions and other molecules cross the BBB by

paracellular diffusion through the junctional complex or by

the transcellular pathway across the cells (Figure 3).

The paracellular pathway. The paracellular pathway is a

passive diffusion process that consists of the movement of

lipophilic or low molecular mass solutes across the BBB,

which depends on electrochemical, hydrostatic and osmotic

gradient. This mechanism is structurally mediated by TJ

and is solute concentration dependent. In terms of function,

endothelial cytoskeleton contractility and adhesive forces

drive the permeability of the junctional complex (Miller,

2002). A subtle and dynamic equilibrium between both forces

determines one of the main blood-brain exchange processes.

Nevertheless, the paracellular diffusion only plays a minor

role in the brain-targeted drugs (Orthmann et al., 2011).

Figure 3. Physiological crossing of the BBB. Representation of the paracellular route and transcellular routes such as carrier-mediated endocytosis,
efflux pumps, receptor-mediated endocytosis and adsorptive-mediated transcytosis.
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The transcellular pathway. The transcellular pathway, which

can be energy or non-energy dependent, includes transcellular

diffusion across both the luminal and the abluminal mem-

brane of the capillary endothelium (Engelhardt & Sorokin,

2009), receptor-mediated transcytosis, efflux transport

system, endocytosis of positively charged molecules and

carrier-mediated transport (Orthmann et al., 2011).

Receptor-mediated transcytosis. It is the main mechanism

used by brain ECs to uptake molecules such as hormones

or high molecular mass proteins such as insulin, leptin, low

density lipoproteins, transferrin and IGF across the BBB

(Duffy & Pardridge, 1987; Holly & Perks, 2006). This

pathway is an active transport pathway that depends on

temperature and can be saturated (Scherrmann, 2002).

Receptor-ligand recognition promotes the formation of

coated pits that eventually engulf the ligand by formation

of an endocytic vesicle. The second step consists of an

endosomal fusion that dissociates the receptor from the ligand

(Scherrmann, 2002) and release the content by exocytosis.

However, not all vesicles successfully cross the BBB since

some fuse with lysosomes and their content is lost due to

low pH and enzyme-mediated hydrolysis (Broadwell et al.,

1988). It has been proposed that this is a target pathway for

CNS drug delivery because it is neither size limited nor

lipophilicity-dependent. In addition it is considered safe and

effective due to its high specificity and the use of an entirely

physiological mechanism.

The efflux transport system. It is an active transport process

where distinct substrates are removed from the CNS and

transferred to the systemic circulation in order to prevent

the accumulation of compounds that have gone through

the BBB (Loscher & Potschka, 2005; Newton, 2006).

In certain situations, some drugs are able to overcome

the BBB but they do not achieve therapeutically active

concentrations because of efflux pumps that carry them

from parenchyma to the luminal membrane and back to the

systemic circulation.

The prototypic efflux transporter is the glycoprotein

P (gp-P), a glycosylated member of the ATP-binding cassette

(ABC) transporters, expressed on the luminal membrane

of the endothelial cells. The gp-P is included in the class

of multidrug resistance receptors (MDRs) characterized for

being an ATP-dependent remover of anticancer drugs,

antibiotics, immune system suppressors or ionic channel

modulators (Loscher & Potschka, 2005). In brain capillaries

there is a high concentration of gp-P, where it plays a role in

avoiding the accumulation of toxins or drugs in the brain,

being essential to protect the neuron viability (Schinkel et al.,

1994, 1996). However, there are other transporter classes

that are expressed in brain such as monocarboxylate trans-

porters (MCTs) and organic anion transporters/organic anion

transporter polypeptides (OAT/OATPs) (Lee et al., 2001;

Sun et al., 2003). The latter, in contrast with ABC

transporters, are an example of energy independent exchan-

gers. Since they are unable to hydrolyze ATP they cannot

transport a drug against its concentration gradient. OAT/

OATPs tend to work as exchangers rather than pumps

by using ion or substrate gradients. Therefore, their transport

is bidirectional and relies on the drug concentration on both

sides of the BBB (Fricker & Miller, 2004).

Charged compound interaction. Positively charged substances

such as cationized albumin and histone interact with nega-

tively charged components of the EC membrane allowing

the adsorptive-mediated endocytosis to overcome the BBB

(Kang & Pardridge, 1994; Pardridge, 1994). This biological

pathway can be used to increase the delivery of conjugated

drugs across the BBB as happen with b-endorphin conjugated

to cationized albumin (Pardridge et al., 1990). The cationized

proteins are obtained by increasing their isoelectric point

from neutral to highly alkaline. This approach is also being

tested with other proteins such as antibodies in order to be

used as diagnostics, neuroimaging and as a treatment

for mental diseases (Kang & Pardridge, 1994; Pardridge

et al., 1990).

Carrier-mediated pathway. The carrier-mediated pathway is

a saturable transport process that can be energy-dependent or

independent, which mediates the exchange of substances

between the systemic circulation and the brain parenchyma

(Brasnjevic et al., 2009). These carriers are usually polarized

and localized on both the luminal and abluminal membrane

(Farrell & Pardridge, 1991). There are many carrier systems

expressed in brain ECs in order to selectively vehicle a lot of

molecules (Tamai & Tsuji, 2000), e.g. glucose is passively

supplied through the GLUT-1 transporter by concentration

gradient (Betz et al., 1983). In the case of amino acid, there

are different and selective energy dependent carrier proteins,

and it depends on the physicochemical properties of each

amino acid. Large, neutral and aromatic amino acids are

uptaken by the N- or L- system while small, neutral amino

acids go through the A-system (Cancilla & DeBault, 1983;

Pardridge & Oldendorf, 1975), the ASC system is responsible

for the transport of sulphur-containing amino acids being the

major transporter of cysteines. Finally, charged amino acids

use ion channels, Na/K pumps or Na/Cl cotransporters

(Mann et al., 2003).

BBB disruption in pathophysiological conditions. Under

physiological conditions the junctional complex in the

neurovascular system acts as a barrier that impairs the

access of molecules and immune cells including mono-

cytes, lymphocytes and other leukocytes. In a wide number of

pathologies affecting the CNS, including infections or

secondary inflammation, the integrity of the BBB is highly

compromised and major membrane permeability changes

occur: brain microvessels become more leaky and fluid

extravasation generally produces brain oedema (Stamatovic

et al., 2008).

This process is triggered by several groups of molecules:

vasoactive agents such as histamine, substance P, endothelin-

1 and bradikinin, growth factors including basic fibroblast

growth factor and transforming growth factor b, and

other inflammatory mediators such as cytokines, matrix

metalloproteases, free radicals and lipids (Stamatovic et al.,

2008). One of the most severe complications associated

with Plasmodium falciparum infection is cerebral malaria

(CM), which is due to the breakdown of the BBB

156 M. Tajes et al. Mol Membr Biol, 2014; 31(5): 152–167
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(Adams et al., 2002) probably because of the action of

cytokines such as TNF-a (Grau et al., 1989; Kwiatkowski,

1990). In ischemia and angiopathies BBB hyperpermeability

and transient disruption can occur by action of thrombin,

amyloid b-peptide, intracellular Ca2+ and immune system

cells (Brown et al. 2004; Lee et al., 1997; Mackic et al.,

1998). All these molecules and cell transendothelial migration

alter the molecular distribution of the junctional complex,

involving ZO-1 and occludin degradation, and actin cyto-

skeleton reorganization (Neuwelt, 2004). Adhesion molecules

are responsible for the intracellular signalling that triggers

functional changes in the endothelium. Brain ECs undergo

modifications in surface protein expression, alteration in

secretory function, reduced transendothelial electric resist-

ance and increased leukocyte transmigration (Burns et al.,

1997, 2000). These responses are mainly executed, after

environmental changes, through cytoskeletal redistribution,

junctional protein phosphorylation and alterations in calcium

homeostasis (Couraud, 1998).

In vitro BBB models in experimental research

The use of purified bovine, rat, porcine and human brain

endothelial cells and several immortalized cell lines have

been employed to develop in vitro BBB models (Reinhardt &

Gloor, 1997) as an alternative to in vivo models with animals.

The in vitro assays raise less bioethical concerns than in vivo

models and offer a more controlled experimental system as

well as they produce significant economical savings.

The in vitro model must reproduce functional and struc-

tural BBB properties. and therefore, has to preserve endothe-

lial cell morphology with high expression of junctional

proteins, selective permeability, expression of efflux trans-

porters and maintenance of a high TEER as a marker of BBB

maturity and integrity (Booth & Kim, 2012).

They can vary widely in complexity ranging from simple

monolayers of cells to co-cultures of endothelial cells with

slices of cortical tissue. Moreover the co-cultures that closely

mimic the in vivo situation are those performed by culturing

brain capillary endothelial cells on one side of a filter and

astrocytes on the other.

Several barrier models employ cell lines that are not even

of brain origin, such as Madin-Darby canine kidney, Caco-2

cell line from human colon carcinoma and ECV304, a cell

line with mixed characteristics from endothelium and epithe-

lium (Prieto et al., 2004). Although positive results have been

achieved for passive diffusion assays, these cells that are not

derived from brain endothelium may lack specific trans-

porters or metabolic pathways (Polli, 2000). Currently,

cultures of brain ECs are used to assay drug neurotoxicity

and barrier permeability but the method is limited due to slow

cell growth and easy contamination by other cell types

(Brown et al., 2007). Up to date, rat brain EC monolayer

culture is the simplest in vitro cell screening experiment and

has proved to be useful in early stages of drug development

(Garberg et al., 2005). However, co-culture models have

demonstrated to be more suitable since their permeability

is more selective (Reinhardt & Gloor, 1997). Two main

approaches are available to obtain BBB-inducing brain

capillary ECs (BCECs), the co-culture of BCECs with glial

cells or the culture of BCECs in medium from glial and

endothelial co-culture.

A pathological in vitro model resembling a drug resistant

epileptic BBB has been developed as an alternative approach

to assess drug permeability in vitro (Cucullo et al., 2007).

The model was based on a primary cell culture obtained by

biopsy of an epileptic patient that had undergone surgical

intervention. The general aim of using pathological models

of BBB is to screen drugs that may have different perme-

ability due to disease-altered BBB. Other alternatives to

in vitro studies being considered use microfluidic in vitro

models of BBB (Booth & Kim, 2012), and cells derived from

invertebrates such as Drosophila melanogaster and Locusta

migratoria or from zebrafish (Geldenhuys et al., 2012). In the

particular case of the above-mentioned cerebral malaria,

primary cultures of porcine brain capillary endothelial cells

have been used as in vitro BBB model (Treeratanapiboon

et al., 2005).

CNS drug delivery

There are many drugs that could have a therapeutic effect

in CNS pathologies but their application is limited due to

their pharmacokinetics. There are different strategies to cross

or to by-pass the BBB that can be grouped as invasive and

non-invasive techniques (Figures 4 and 5).

Invasive techniques

BBB modification. Brain endothelial junctional complexes

avoid the access of drugs through the paracellular pathway.

Modification of the BBB permeability can disrupt the

junctional complexes and increase drug uptake in brain in a

transient and reversible manner, avoiding an extended open-

ing of the barrier which would lead to neurophatological

changes, cerebral vasculopathy and seizures (Miller, 2002).

This strategy has been applied to ensure the delivery of drugs

Figure 4. A schematic representation of current strategies to deliver
drugs to the brain by invasive techniques. It encloses surgery-needed
approaches and BBB disruption whilst non-invasive techniques include
drug modification by medicinal chemistry approaches and drug encap-
sulation through nanotechnological carriers.
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into the brain parenchyma (Loch-Neckel & Koepp, 2010).

This approach has several drawbacks such as diminished

control of drug release and targeting and increased access of

potentially toxic molecules. Nevertheless four methods are

available to open the BBB: Osmotic, biochemical, alkylgly-

cerols (AKG) or ultrasound.

Hyperosmotic shock. Hyperosmotic shock can be used to

open the junctional complexes temporarily and reversibly

to increase drug permeability. It is carried out by the infusion

of highly concentrated saccharide solutions into the carotidal

artery to reach the CNS (Kroll & Neuwelt, 1998). Brain ECs

shrink under hypertonic environment due to the osmotic

pressure that forces the water to exit. When the cells decrease

in volume, small holes are generated at the tight junctions that

permit the access of water-soluble drugs (Greenwood et al.,

1988). In anticancer therapy, mannitol is being employed as

a hyperosmolar agent to facilitate the delivery of cyclophos-

phamide, procarbazine and methotrexate (Doolittle et al.,

1998). However, it has been reported that hypertonic infusion

of mannitol in rat brain produced neuronal damage, alteration

in glucose uptake, expression of heat shock proteins and

microembolisms (Salahuddin et al., 1988).

Biochemical disruption. In vivo and in vitro studies of

BBB pathological conditions have demonstrated that many

vasoactive agents such as histamine, bradykinin and other

molecules such as solvents, stabilizers or adjuvants increase

BBB permeability (Matsukado et al., 1996). The signalling

pathway of these molecules generally converges to the

phosphorylation/dephosphorylation of the junctional complex

proteins (Stamatovic et al., 2008). These biochemical

changes in protein phosphorylation relax the cell–cell contact

facilitating paracellular drug access. Alkermes Incorporation

developed a synthetic bradykinin analog, Cereport (RMP-7),

that increases cyclic GMP levels through binding to the

cerebrovascular bradykinin B2 receptor, transiently disrupts

the tight junctions in brain endothelial cells, and increases

brain permeability (Bartus et al., 2000; Emerich et al., 2000).

Furthermore, polysorbate 80 (PS80)-coated PBCA-NPs

concentration-dependent, triggers the reversible opening of

the BBB after 3–4 h (Rempe et al., 2011). The BBB is

regenerated after 6–10 h accompanied by normalized cell

morphology and probably supported by an upregulation

of claudin-5 (Hwang & Kim, 2014).

AKGs. Recent studies with anticancer agents have been

carried out in a rat glioma tumour model after systemic

administration of various AKGs (Erdlenbruch et al., 2003).

The result was an increased delivery of the drug to the site

comparable to the levels of drug uptake after hyperosmotic

shock and far greater than upon biochemical disruption

(Erdlenbruch et al., 2003). However, the mechanism involved

in AKG function is not yet understood but many clues reveal a

possible interaction with receptor located in the endothelium.

This hypothesis is based on the knowledge that the barrier

disruption is concentration- and structure-dependent, typical

of receptor-mediated responses and it has been demonstrated

that the alkyl group length and the number of glycerols

determine the degree of BBB disruption (Patel et al., 2009).

Ultrasound and electromagnetic radiation

disruption. Ultrasounds are able to specifically open local

BBB regions, in contrast to the methods mentioned above.

Two different, transient and reversible approaches are avail-

able to improve drug uptake: Thermal, which induces a mild

hyperthermia (Cho et al., 2002) and non-thermal, based on

physical cavitation of the membrane (Vykhodtseva et al.,

2008). Since hyperthermia has proved to increase membrane

permeability, thermal site-directed opening of the BBB is

contemplated as a possible strategy to enhance CNS drug

delivery (Cho et al., 2002). The advantage of this technique

is that it is site-specific and thus diminishes the risks

inherent to a generalized BBB opening (Madsen &

Hirschberg, 2010).

Surgical approaches. Direct local drug infusion is considered

one of the simplest methods of brain drug delivery and is

commonly used in emergency situations where the agent must

reach urgently the brain, but there is a limitation due to

the slow diffusion coefficient of the drugs. Drug diffusion

depends on the location of the drug administration, liposo-

lubility, molecular mass, polarity and tissue affinity. There

are different pathways of direct injection: To the brain

parenchyma by intracerebral implant or into the CSF via

intraventricular infusion or intrathecal administration.

Intracerebral administration. This strategy has proved to be

inefficient and clinically limited. In addition to the obvious

need of surgical intervention, drug diffusion is strictly

dependent on molecular mass and drug concentration in

brain parenchyma is limited by rapid cerebrospinal fluid

(CSF) exchange. Intracerebral administration would only

be useful if the target sites were adjacent to the ventricles

or on the parenchyma surface (Brasnjevic et al., 2009;

Scheld, 1989).

Intraventricular and intrathecal administration. Intrathecal or

intraventricular administration consists of a direct delivery of

Figure 5. A schematic representation of current strategies to deliver
drugs to the brain by non-invasive techniques. Non-invasive techniques
include drug modification by medicinal chemistry approaches and drug
encapsulation through nanotechnological carriers.
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drug to the CSF bypassing the BBB and blood-CSF barrier.

The procedure can be done by direct injection piercing

the skull and into the ventricles or through lumbar puncture,

both of them with a considerable associated risk. The

ventricular system is connected with the brain parenchyma

and thus any compound dissolved in the CSF will be able

to diffuse and reach nearby CNS structures. Theoretically,

solutes in the CSF are freely transported into the brain but

experimentally not many successful results have been

obtained (Blasberg et al., 1975). This is because physiolo-

gically the CSF tends to move in a direction opposite to

that of the drug infusion. In addition, CSF replacement is

done in a few hours needing a quick and continuous infusion

of drugs with controlled extended release devices or formu-

lations (Patel et al., 2009).

Microchips. Microchip delivery of drugs by implanting

solid-state electronic silicon devices into the brain has been

proposed as a way to deliver precise quantities of drugs

under specific physiological conditions (Santini et al., 1999).

There are studies for the brain tumors treatment using a

micro-electro-mechanical systems (MEMS) technology to

deliver drugs with precise temporal control over release

kinetics. The device is a liquid crystalline polymer reservoir,

capped by a MEMS microchip (Masi et al., 2012). And

also resorbable, a multi-reservoir polymer microchip drug

delivery system has been tested against a tumor model

(Kim et al., 2007).

Non-invasive techniques

Medicinal chemistry approach

Chemical modification of the drug. Chemical modification

in drug design is a widely used approach to ameliorate

physicochemical properties of the compound in order to

achieve expected pharmacokinetics. It consists of an active

compound, the parent drug, which is reversibly modified to

generate the prodrug. Once the prodrug reaches the target

site in vivo the parent drug is released by chemical or

enzymatic cleavage and then, exerts its biological effect

(Ettmayer et al., 2004; Rautio et al., 2008). The general

strategy to generate prodrugs is to increase the molecule

lipophilicity or to reduce the ability to bind hydrogen

(Patel et al., 2009). It is carried out attaching lipophilic

moieties to the molecules and often to the polar functional

groups since these are limiting factors of BBB permeability.

The outcome of these chemical modifications usually

increases the uptake in brain, although increased lipophilicity

also implies higher uptake in peripheral tissues (Witt et al.,

2001). For instance, to have a leptin capable of penetrating

the BBB made a fusion protein; Tat-modified leptin is more

accessible to hypothalamus through BBB with a significant

inhibition of body-weight gain in high-fat-diet fed mice

(Zhang et al., 2010).

Fusion proteins or cell penetrating peptides. Cell penetrating

peptides (CPP) are short amphipathic cationic peptides

that facilitate rapid internalization of exogenous cargo like

proteins nucleic acids, liposomes, or nanoparticles (Lalatsa

et al., 2014; Sharma et al., 2014). It is not very well known

the mechanism by which these peptides can cross the

cell membrane. One of the first CPP described was the

transactivator of transcription (TAT) from human immuno-

deficiency virus (HIV-1), followed by other natural CPPs

(AntP/Penetratin), the Syn B vectors (family of vectors

derived from the antimicrobial peptide protegrin 1) (Lalatsa

et al., 2014) or synthetic origin (Mastoparan/transportan)

(Sharma et al., 2014).

TAT is a peptide which contains a basic region of six

arginine and two lysine residues. These basic amino acids

seem to be the key to its highly efficient membrane

translocation (Lai et al., 2013). Recently, it has been described

the neuroprotective effect of TAT-14-3-3" fusion protein

against brain ischemic injury through inhibiting neuronal

apoptosis and autophagic activation (Zhu et al., 2014).

The SynB peptides are a family of CPPs that show charge-

mediated BBB selectivity, with uptake proceeding via a

caveolaeindependent pathway (Lalatsa et al., 2014). SynB

peptides have been used as a cationic CPPs for low molecular

weight compounds and for peptides suchs as dalargin (Lalatsa

et al., 2014). Penetratin, a CPP with a low content of basic

amino acids, has been used to functionalize PEG-PLA

nanoparticles, and enhance the cellular accumulation

(Lalatsa et al., 2014).

Mastoparan is a 14-residue peptide from wasp venom and

has been used in the construction of 21 residue peptide

Transportan 10 (TP10) which delivers its cargo into the cells

(Sharma et al., 2014).

Other kind of fusion proteins have been developed, such

as the fusion of the neurotrophin glial cell line-derived

neurotrophic factor (GDNF) and the anti-inflammatory

agent type II tumor necrosis factor receptor (TNFR) decoy

receptor with the heavy chain of a chimeric monoclonal

antibody (MAb) against the mouse transferrin receptor (TfR).

These fusion proteins enhance the therapeutic effect of

both compounds in an acute stroke situation (Sumbria

et al., 2013).

Drug delivery through microspheres and biodegradable

wafers. Microsphere technology has recently been imple-

mented by using lipid-based polymeric devices to increase

drug retention in the brain (Dang et al., 1994). The active

water-soluble macromolecule agent is conjugated and loaded

into tiny spheres that can be inserted into the brain through

stereotaxic surgery (Batycky et al., 1997). This method is

easier and safer than the methods exposed before since there

is no need for open surgery and less damage is done around

the implemented area.

Biodegradable wafers are also being studied for the

local delivery of drugs into the brain. An example of

biodegradable polymer is the polyanhydride poly[bis]

(p-carboxyphenoxy) propane:sebacic acid] (PCCP:SA)

(Leong et al., 1985), which offers a controlled drug

release through polymer degradation. Adequate modifica-

tions in polymer composition and proportion can offer a

range of delivery from days to years (Patel et al., 2009).

The main drawback of this method is that some drugs

have limited diffusion in brain parenchyma, which implies

that the drug-polymer complex must be administered near

the target.
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Alternative methods

Intranasal administration. Intranasal administration is an

alternative non-invasive method to deliver drugs to the

CNS. Therapeutically active compounds are absorbed via

sensorial neurons located in the olfactory bulb and delivered

to the CNS through the CSF of the olfactory region. Clinical

trials in humans have demonstrated this method viable and

concluded that cerebral drug diffusion is done intraneuronally

and/or extraneuronally (Illum, 2000). Small lipid soluble

molecules have been assessed as in AD treatment with BDNF,

achieving successful delivery (Thorne et al., 1995). Drug

uptake through this pathway depends much on the molecular

mass of the drug and is proportional to the drug lipophilicity

(Thorne & Frey, 2001). However, there are many physio-

logical variables that may condition the administration such as

higher pH, high enzymatic activity of the epithelium, mucosal

irritation or even nasal pathologies such as a simple cold

(Patel et al., 2009). Recently there are some studies which try

to facilitate the brain delivery of the intranasal nano-sized

micelles modifying them with TAT peptide in brain tumours

(Taki et al., 2012).

The advantages that this pathway offers are that it is a non-

invasive technique and drugs are able to bypass the first-pass

metabolism. Since this method is limited by drug’s lipopho-

bicity colloidal nanocarriers can be implemented to mask

hydrophilic molecules and offer a wider range of molecules to

be used in CNS disorders treatment (Tiwari & Amiji, 2006).

Molecular Trojan horses. Molecular Trojan horses (TH) are

vectors able to bind specific receptors while carrying drugs

which do not accept chemical modifications allowing them to

cross BBB. The complex TH-drug is called a chimeric

peptide because of its mixed structure and double function-

ality, targeted transport (TH) and pharmacological activity

(drug). In this way drugs that do not tolerate chemical

modifications can be systemically administered and correctly

delivered to the brain since the vector-receptor is specific

and once at position it is transported across the BBB. One of

the most studied targets for TH-drug method is the insulin

receptor due to its ubiquity in brain vessels (Vlieghe &

Khrestchatisky, 2013).

Genetic engineering. Implanting inside the brain a living

tissue that expresses and secretes the therapeutic molecule

has been tested, and positive results were obtained in

Parkinson’s disease treatment (Madrid et al., 1991). Recently,

neural stem cells (NSC) were implanted into the hippocampus

of an Alzheimer’s disease (AD) and Down syndrome model

mice to change the levels of tau/reelin-positive granules (Kern

et al., 2011). Another example is the neurotransplantation in

mice nucleus accumbens of stem cells which expressed the

human dopamine receptor to modify alcohol consumption

(Grammatopoulos et al., 2010). However, implanted cells do

not survive unlimitedly since there is no revascularization

around the tissue. Promising solutions from genetic engineer-

ing were assessed in order to obtain different cell types that

secrete the desired agent with a longer survival rate, such as the

co-grafting engineered neurotrophic factor-producing cells

with engineered therapeutic agent producing cells (Leigh et al.,

1994). More recently another study tried to solve that problem

doing a co-transplantation with helper cells to offer trophic

support (Liang et al., 2013).

Liposomes, nanopolymers, nanoparticles and solid lipid

nanoparticles. Liposomes, nanopolymers, nanoparticles and

solid lipid nanoparticles are carriers that can be administrated

parenterally facilitating the delivery of drugs to the brain.

Liposomes. Liposomes (LP) are lipid bilayer-based artificial

vesicle that imitates biological membrane with different size,

20–5000 nm, and number of lipid bilayers, being unilamellar

or multilamellar (Lasic, 1998) (Figure 6). By using choles-

terol and phosphatidylcholine they offer an internal hydro-

philic environment that can facilitate the drug delivery across

BBB. LP-encapsulated drugs have a lower volume of

distribution compared to free drugs due to their inclusion in

the liposomes. Cholesterol and high-phase transition lipid are

added into the formulation to stabilize the lipid bilayer and

Figure 6. Schematic representation of the three different types of liposomes. Small Unilamellar Vesicles (SUV), Large Unilamellar Vesicles (LUV)
and Multilamellar (MLV).
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provide a non-leaky transport system (Drummond et al.,

1999).

Since LPs are highly lipophilic they are rapidly eliminated

from circulation by the macrophages from reticuloendothelial

system (RES) predominantly form liver and spleen

(Drummond et al., 1999; Frank, 1993). In order to avoid

the RES and to increase bioavailability they usually undergo

surface modification with polyethylene glycol (PEG) to

diminish their lipophilicity (Ricci et al., 2006). Many

modifications are possibly done on the LPs due to their

similar nature to the cellular membranes. Specific active

targeting can be achieved by attaching mAbs to the liposomal

surface (Zhang et al., 2004). The recognition by a receptor in

the BBB promotes the internalization as a molecular TH.

Other modification to improve the crossing of the BBB is

the covalent conjugation of the cell-penetrating peptide TAT

(AYGRKKRRQRRR) to the cholesterol part of liposomes,

for example in the treatment of brain glioma animals

(Qin et al., 2011). They have been tested even for genetic

therapy (Craparo et al., 2011).

Nanopolymers and nanoparticles. Nanoscale delivery systems

are increasing their importance because they offer a relatively

drug nature-independent transport due to their ability to

mask the physicochemical properties of the content (Vlieghe

& Khrestchatisky, 2013). Generally, nanotechnology-based

drugs delivery is found in oral, topical and injected formu-

lation to take advantage of current administration methods.

The main pathway in which the subsequent delivery systems

overcome the BBB is mainly by BCECs uptake employing

adsorptive-mediated endocytosis (De Jong & Borm, 2008).

Colloidal carriers, nanocarriers and nanovectors are poly-

mer-based delivery system in which their main characteristic

is their size that ranges from 10–1000 nm. Beside their

reduced size, a considerable volume of single or various

compounds can be contained in them, uptaken by BCECs

and reach the CNS (Brasnjevic et al., 2009). Currently,

many biotechnological and pharmaceutical companies have

approved nanotechnology-based delivery systems but only a

few efficient drug-loading methods exist making it the

principal limiting factor prior commercialization (Vlieghe &

Khrestchatisky, 2013). The last step of the delivery process is

drug release which is as crucial as the BBB crossing itself.

These nanoscaled transport system also intend to improve

drugs bioavailability and pharmacokinetics, thus meliorate

the therapeutic index and safety profile. They generally offer a

sustained release and constant levels of drug in plasma

over the time. Several non-excluding mechanisms are avail-

able depending on the nature of the nanocarrier and the

timing wanted for the drug, which are: drug desorption, drug

diffusion from the container and polymeric matrix erosion

(Jain, 2007).

Polymer-based nanocarriers are macromolecules formed

by multiple repetitions of single structural units to yield den-

drimers and polymeric micelles (Vlieghe & Khrestchatisky,

2013). The former usually have a size under 50 nm and have a

branched organization consisting of multiple ramifications

coming out from a central core (Wu et al., 2006). Branch

terminations conforms the dendrimeric surface while intern-

ally the spaces between the branches are filled to drugs,

radionuclides or agents used in image analysis. Once across

the BBB a physiological and controlled degradation of the

polymer releases the compounds in the brain parenchyma

(Vlieghe & Khrestchatisky, 2013).

As for polymeric micelles, ‘‘biocompatible amphiphilic

block copolymers’’ are the structural units that constitute

them, forming a rounded-shape consisting of a core and a

shell with a size range from 50–100 nm. These polymeric

micelles have a hydrophobic internal core that contains the

desired compound to be delivered surrounded by a hydro-

philic shell (Olivier, 2005). These micelles are spontaneously

formed in aqueous solution when a critical micelle concen-

tration is achieved.

Nanoparticles (NPs) delivery system is solid colloidal

particles with dimensions within the nanometric scale

(Olivier, 2005; Orthmann et al., 2011). Similar to polymeric

nanocarriers it is a macromolecule build up by repetitions of

simple structural units consisting of biocompatible and

GRAS ingredients. An advantage to LPs is their increased

stability but they are also conditioned by its composition and

by temperature, pH, electrolyte composition, size and steric

hydrance (Kreuter, 1994).

In nanoparticulate systems, drugs are loaded by dissol-

ution, capture, encapsulation, absorption or covalently con-

jugated (Avgoustakis, 2004). In comparison with LPs, NPs

require less excipients providing an easier formulation process

and in terms of pharmacokinetic parameters they have higher

stability and permits a more controlled drug release (Vlieghe

& Khrestchatisky, 2013). Two types of NPs are mainly used

nowadays: Nanocapsules and nanospheres (Patel et al., 2009).

The former has a core shell structure where the drug is

contained inside while the latter has a continuous matrix

structure where the drug is dissolved. The common nomen-

clature used in literature to designate both systems is NP since

not always the difference is clear enough.

Some of the compounds already approved by the FDA

are poly(glycolic acid) (PGA), poly(lactic acid) (PLA) and

its copolymers poly(lactic-co-glycolic acid) (PLGA)

(Brasnjevic et al., 2009). Biological polymers are also

used in NP fabrication to prevent toxicity issues associated

to synthetic polymers. A commonly used, if not the most,

poly(butyl)cyanoacrylate (PBCA) polymer-based NP has been

used to deliver antineoplastic drugs, peptides and analgesics

to the CNS, either by adsorption to surface or incorporation.

The characteristic that differentiates it from other is its

rapid biodegradability. The outcome of these PBCA NPs was

favourable (Kreuter et al., 2002). Other compounds used are

poly(alkylcyanoacrylates) (PACAs) that includes poly(butyl-

cyanoacrylate) (PBCA) and poly(hexylcyanoacrylate)

(PHCA, poly(methylidene malonate), poly(methyl)methacryl-

ate (PMMA), acrylic copolymers and polyesters (Vlieghe &

Khrestchatisky, 2013).

As in LPs, the surface of the NP can be modified

chemically or biochemically with functional groups (PEG) or

mAbs to target specific types of cells or tissues in order

to improve bioavailability, to increase diffusion and even to

protect it from enzymatic inactivation (Brigger et al., 2002).

Other strategy is conjugate the nanoparticles to TAT to

enhance the CNS bioavailability of the encapsulated drug

(Rao et al., 2008). In fact, there are also olymeric micelles
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anchored with TAT for delivery of antibiotics across BBB

(Liu et al., 2008). Many studies have been published about

NPs and how subtle modifications can make a difference in

the delivery.

Solid lipid nanoparticles. In spite of their lipidic nature, solid

lipid nanoparticles (SLN) are not classified as LPs neither as

NPs (Montenegro et al., 2012). Structurally, SLNs are solid

lipid based as the ones used in the food industry and are

stabilized with common emulsifiers such as polysorbates,

polxamers and bile salts. They are a novel drug delivery

system developed to solve issues attending polymeric NPs,

although they maintain properties such as controlled drug

release, increased drug stability and the success of over-

coming different administration routes (eyes, topic, oral and

parenteral). Since they are lipid-based they present a lower

cytotoxicity, an easier preparation protocol and have an

improved stability and drug release (Blasi et al., 2007;

Denora et al., 2009). Brain-targeted SLN have been

developed by coating the surface with thiamine that increased

the unidirectional uptake transfer constant to the BBB

at different brain perfusion intervals. Th SLNs conjugated

with transferrin have shown a great potential in the treat-

ment of brain diseases such as cerebral malaria (Craparo

et al., 2011).

Elimination and clearance of LP, NP and SNP. LP and NP and

generally all compounds that have a highly lipophilic nature

are rapidly eliminated from the bloodstream or accumulated

in different organs such as liver (60–90%), lungs (3–20%),

spleen (2–10%) and bone marrow (51%) (Kreuter, 1994).

Removal of the nanocarriers is mediated by conjugation to

plasma proteins or opsonisation. Recognition and sequestra-

tion by Kupffer cells in the liver and macrophages of the RES

limits their half-lives to 2–3 min if no modification is made

(Bazile et al., 1992). The elimination process consists of an

initial opsonisation followed by a rapid uptake done by the

mononuclear phagocytic system. However, RES behavior

depends much on physicochemical properties of the trans-

porting molecule such as size and surface properties including

hydrophobicity and charge (Denora et al., 2009). In order to

impair the rapid elimination of LP, NP and SLN there are

different strategies which consist in chemical modifications,

mainly cationization and PEGylation.

Targeted drug delivery. An efficient drug targeted delivery

can reduce considerably the dose of drug needed and in

consequence improve the safety in vivo, which is the major

point in drug’s commercialization. The strategy consists of

attaching ligands that are specifically recognized by BCECs

receptors such as sugar residues, folic acid or even engineered

mAbs (Lockman et al., 2002; Mishra et al., 2006). Targeting

moieties can be attached directly on the surface of the carrier

system or on the external end of the PEG if it is PEGylated,

forming what is known as third generation carriers (Vlieghe

& Khrestchatisky, 2013).

Each nanotechnology-based delivery systems can also be

subclassified into first, second or third generation depending

strictly on their surface modifications. LPs, NPs and SLNs

that has not undergone any surface modifications are

considered the first generation. If they do present modifica-

tions such as PEGylation or other stabilizing methods to

reduce plasmatic clearance then they are known as second

generation or also named stealth carrier. The latter denom-

ination surges from the ability of modifications such

as PEGylation that permits the delivery system to evade

macrophages of the RES. At last, third generation or targeted

sterically stabilized delivery systems apart from improved PK

from the second generation can also target specific organs or

cell-types.

Preclinical data in brain cancer models indicate that

PEGylated liposomal doxorubicin with an additional gluta-

thione (GSH) coating can significantly reduce brain tumor

growth (Gaillard, 2011). Other strategy could be the design

of glucosyl liposome ligands, which are able to cross BBB

by GLUT1 as drug carriers in targeting delivery system

(Qu et al., 2014). Glucosyl modified liposomes showed

potential application with brain targeting, high transfer

efficiency, good in vivo cycling stability and easy preparation

(Qu et al., 2014). Surface modification of liposomes with

CPPs facilitates endosomal escape and increases their cellular

delivery (Sharma et al., 2014). There are studies combining

CPPs with Transferrin (Tf)-liposomes which result in bio-

compatible formulations leading to efficient translocation of

doxorubicina across cellular and brain endothelial barriers

both in vitro and in vivo (Sharma et al., 2014).

Lactoferrin (Lf), a single-chain iron-binding glycoprotein,

is part of Tf family which can penetrate the BBB via receptor-

mediated transcytosis (Huang et al., 2013). Some studies

developed a doxorubicin-loaded lactoferrin-modified proca-

tionic liposome delivery system and evaluated its therapeutic

effect for glioma (Chen et al., 2011). Other studies focused

on developing dual-targeting daunorubicin PEG-liposomes

by conjugating vesicles with p-aminophenyla-D-manno-

pyranoside (MAN) and transferrin (TF) (Lai et al., 2013;

Ying et al., 2010). The ligand MAN plays a major role in

transporting the liposomes across the BBB while TF acts as a

main role in targeting brain glioma cells (Lai et al., 2013).

Although the main aim of targeted LPs and NPs is to offer

an organ-specific uptake many efforts have gone beyond

and conferred drug carriers the ability to aim an additional

target once inside the CNS. The secondary target is achieved by

three strategies: Dual targeting, sequential targeting and

selective action targeting. The dual targeting approach employs

a single targeting moiety that has its receptor expressed at the

BBB and at the desired site of action. Sequential targeting

exerts its function through the combination of two targeting

ligands. The first one directs the compound to the brain while

the other one is responsible for cell specificity inside the brain.

At last, selective action targeting is used to achieve cell-type

specificity. This targeting method shares common features

with the pro-drug approach. The delivered drug, once reaching

the brain is not active until a cell-type specific enzyme cleaves

and releases the drug. Since the enzymes are restricted to a

certain subpopulation of cells only these will be under the

effect of the therapeutic compound (Zhang et al., 2002).

In addition, nanoparticulate vectors of drugs also can

be chemically modified to increase cellular uptake and

the potential delivery in different cell compartments

(Juillerat-Jeanneret, 2008). Anti-cancer agents have been
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loaded in nanocontainers conjugated with ligands

targeting the BBB to enhance selectivity for brain cancers

(Soni et al., 2005).

Conclusions

The BBB is a highly organized structure where the micro-

environment created by the contact between ECs, astrocytes,

pericytes and neurons confers the special characteristics.

A plethora of proteins are involved in the maintenance of

the impermeability to the systemic circulation allowing

the crossing to specific molecules in a regulated ratio. But

the current challenge for the neurological treatments of age-

associated diseases, cancer or other CNS pathologies is the

delivery of drugs crossing the BBB and reaching their cellular

targets inside the brain. It has to be considered that despite

the great effort to develop efficient targeting and delivery

systems, many other limitations must be addressed. Efficient

brain targeting to brain receptors may not necessarily deliver

the drugs across the BBB and inside does not ensure correct

parenchymal diffusion not to mention a possible trigger of

immunological responses. Nowadays different approaches

are been developed using classical pharmacology and nano-

technology to achieve it and there are successful results to

presume that soon there will be a new generation of drugs

delivery system working properly.
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